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The Lagrange Equations, first form, are one among the most neglected 

results and concepts of analytical mechanics. In fact, they are seldom used, 

and their fame is obscured by their sisters, the Lagrange Equations of the 
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second form, in which use is made of the so-called generalized or 

Lagrangian coordinates (generally written   ) and the concept of 

Lagrangian function (generally written L) is introduced.  (Neither concept 

is necessary in the Lagrange’s equation, first form.)  

Modern advanced quantum mechanics still uses the concept of Lagrangian 

Function.  The use of the Lagrange Equation , First form, reappears in 

analytical mechanics when  “non-holonomic” velocity dependent 

constraints appear in  problems, which the Lagrange equations of the 

Second form cannot solve by themselves.  However, the student beware: 

as soon as he sees the symbols qi and L, he has abandoned the clean 

kingdom of the First Form equations and has entered a hybrid kingdom.  

The only new symbols  in the First form are the Lagrange multipliers 

(usually written    ). The multipliers appear here in a new context, only 

remotely related to the problem of finding the maxima of functions 

subjected to constraints, which is the typical problem in which use of the 

Lagrange multipliers is first met by the student.   We will see later   

whether the relationship between  the two problems can be at least vaguely  

clarified.  

In any case, normally, even celebrated textbook avoid the use of Lagrange 

Equation of the first type. At best, they use them when  non-holonomic 

constraints enter the game.  

 

In this short essay I will try to clarify a number of painful pebbles in my 

shoes: 

1. The various types of constraints. 

2. Holonomic and non-holonomic systems. 

3. Virtual displacements.  

4. Constraint equations. Frictionless constraints.  A hint to the 

principle of virtual works. 
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5.  D’Alembert Principle and its consequences. 

6.  The first form of Lagrange’s Equation. 

7. The simplest problem which can be solved via the Lagrange 

Equation of the first form.   

8. Some considerations 

9. Conclusions. 
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(A translated paraphrase of the notes handed out by Prof. T. Zeuli, of the University 

of Turin, in 1962). 

 

 

Although we will be dealing with one among the most neglected of all 

ideas of Lagrange, some introduction is necessary, at least to clarify the 

language we will use.  

What makes the motion of systems of particles interesting, and stimulated 

the gigantic growth of mechanics in the XVIII-XIX century, making new 

ideas possible, is the fact that particles of the systems of interest are not 

free.  Otherwise, all particles in the system could be dealt with singularly, 

and Newton’s Laws would be amply sufficient to describe the motion of a 

constraint-free system. 

1.  For us, a “constraint” will be any condition which limits the freedom of 

the motion of the point masses a mechanical system consists of. To be 

tractable, such a constraint must have a mathematical expression, that is, it   

must be expressed by an equation or an inequality, either in finite or in 

differential form, linking the coordinates of the points of the system. 

This fact gives us the possibility of classifying the constraints on the basis 

of the nature of the equations and inequalities which represent them 

analytically. 

i)  The simplest case is when the constraint is given by an equation such 

as: 

                                              …..            t) = 0 

The constraint thus represented is called a “bilateral positional constraint”. 

For example, suppose that we have a sphere whose radius R is a function of time. 

We can constrain a point to move on such a surface by forcing  it to move in the 

interspace between  two spheres with the same centre, whose radii differ by an 
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infinitely small amount. The constraint to which our (single) point will be 

subjected will then be represented by the equation: 

  
    

    
         

Here the distance of the point from the centre is fixed, i.e. the point cannot move 

neither above nor below the spherical surface, which explains why the constraint 

is called bilateral. 

ii)  Equally simple to express but not necessarily equally simple to deal 

with, is the case in which the constraint equation is  given by: 

                                               …..            t)   0 

It is the case, for example, in which we remove one of the two infinitely 

close spheres of the above example, which will then allow the point to 

leave the spherical surface, being however constrained not to go to the 

inside of the sphere (or non to go outside), according to how we write the 

relationship between R
2
 and the sum  x

2
 + y

2
 + z

2
. 

We will call the constraints represented in this form “unilateral positional  

constraints”. 

We thus see that, in simpler words, “positional” means that the constraint 

can define a relationship of type (1), that is, in finite terms, that is, not 

involving derivatives and infinitesimal calculus terms, between the 

coordinates of the points of the system; while “bilateral” means that the  

relationship can be written as an expression equal to zero, without 

“greater than”  or “less than”” signs.   

Just for completeness we can add that the configurations in which the 

       is satisfied are called “ordinary configurations”, while those in 

which the = sign is satisfied are called “boundary configurations”. 

If the time t does not appear explicitly in the equations (1) or (2), the 

constraints will be called “fixed” or “time independent”. Another, more 

high-brow name meaning exactly the same thing is “scleronomic 

constraint”. On the other hand, if time appears in equations (1) or (2), we 

talk about “time dependent”, or “rheonomic” constraints.  
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I stressed the word “explicitly”, because time is underlying, implicitly, all 

problems of dynamics. No time, no motion – no problem. 

Other examples of particular interest: 

(a)  A system consisting of two points              e              whose 

distance  d  does not vary with time.  The analytical expression of such constraint 

will be: 

        
           

          
      

According to the above “glossary”, this is  a bilateral, positional, fixed 

(scleronomic) constraint. 

(b)  A free rigid system (including a rigid body, which we can imagine as 

consisting of  a very large number of points rigidly connected to each other, by 

links as in  example (a) above).  

If the system consists of N points, there will be N(N-1)/2 distances which must be 

constant in time (this is nothing but the  number of the combinations of N 

elements taken two at the time).  

However, if N>4, such  distances are not all independent. In fact, if we want that 

all points are kept at the same distance from each other, it is sufficient to  impose 

that any three points, let’s say             keep the same distances among them  

and all other N-3 points keep unchanged their distance from         .  We thus 

have a total of   3 + 3(N-3) =   3N-6 independent equalities among the 3N 

coordinates of the N points.  A  rigid, N-point system is thus subjected to 3N-6 

bilateral positional, time independent constraints.  (Why must N be greater than 4?  

Because if N =4 we have that 3N-6 = N(N-1)/2, which means that the number is 

the same as if the distances between couples of points were all independent). Such 

constraints have been given the name of “rigidity constraints”. Please note that the 

3 in 3N  has nothing to do with the number of coordinates of each point, but refers 

to the number of points which are kept fixed  in the system. 

 

(c) A rigid body with a fixed point.  

In this case, having called the fixed point             , we have three more 

conditions, namely:   

                                

The system is thus subjected to   3N-6+3 = 3(N-1) positional, bilateral, time 

independent constraints.    
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Each condition, even involving a single coordinate, we recall, represents  a 

constraint. 

 

2. The positional constraints, whether unilateral or bilateral  (Equations 1 

and 2) limit the configurations of the system at each instant.  But they limit 

also all the possible displacement of all its points  dPi (dxi,dyi,dzj). In fact, 

taking (1)  as a starting point, differentiation gives us: 

  
  

   
    

  

   
    

  

   
      

  

  

 

   

     

And, after division by dt,  

                         
  

   
    

  

   
    

  

   
      

  

  

 

   

   

Here the summation includes 3N terms, extending, as it does, to all 

coordinates appearing in (1), here grouped  in groups of three (a notation 

which is irrelevant to the calculation).   On the other hand,  
  

    
  is outside 

of the summation. 

 I have also introduced Newton’s  “dot” notation for time derivatives: 

     
  

  
 . 

There exists, therefore, a “linear” relationship between  the velocity 

components              of the velocities          , the coordinates xi, yi, zi  of the 

points Pi of the system, and, in case, the time t.  If the constraint (1) is time 

independent, then we say that       is “homogeneous” in              . 

The derivatives 
  

   
 are just functions of the coordinates. Accordingly, we 

might think that constraints could  also exist,  which could be expressed by 

more general equations such as: 
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Or, alternatively: 

                                                     

 

   

   

 Here, the          are functions of the coordinates xi, yi, zi  and, if in case, 

of time t. Such functions are predefined in any possible way.  If there 

exists   a function  f(xi, yi, zi , t ) such that 

                      
  

   
       

  

   
      

  

   
    

  

  
 

then       identifies with      and does not tell us anything more than the 

form: 

                        …..            t) = 0 

which can be obtained by integrating       with respect to time.  

For example, suppose we have the equation expressing the relationship between 

velocities  written as  

                    = 0 

This can be readily integrated as:   

  
    

     
     

which is the equation we already know of a point constrained to stay on a 

spherical surface.  

In fact,  

  

  
   

  

   
    

  

   
    

  

   
      

  

  

 

   

   

If, however, such is not the case, i.e. there is no function f (xi, yi, zi , t ) for 

which   
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and therefore  

                       

 

   

     

cannot be deduced by differentiation of a function “in finite terms” such as 

                        …..            t) = 0 

(which, we know, represents a “positional constraint”) we then say that the 

constraint represented by     , is a bilateral “mobility” constraint. 

Of course, if instead of the symbol  “ = “ we had in       the symbol “  ,  

then we would still say that the constraint is unilateral, and we could 

consider again “ordinary” and “boundary” configurations.  

If the mobility constraint does not depend on time, this means that  

1)             do not depend on time; 

2) the   term is absent.  

As a consequence, the first member of      will be homogeneous in terms 

of the                

 

In conclusion, of all constraints, which can be expressed via           

                       

 

   

   

those for which one can find a function f such that: 

                      
  

   
       

  

   
      

  

   
    

  

  
 

are “positional “ constraints; the others are “mobility” constraints. 
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2. Holonomic and non-holonomic systems. 

(A translated paraphrase of the notes handed out by Prof. T. Zeuli, of the University 

of Turin, in 1962-63). 

 

2.1 Definition: a mechanical system is said to be “holonomic”  if all 

constraints to which it is subjected are positional and bilateral. On the 

other hand they may be time-dependent. 

 

Let’s now suppose that there are  m  constraint equations 

                                               …..            t) = 0   (r = 1,2,…m)  

 (where we will obviously assume that m < 3N). Then, if n is the 

difference between 3N (number of cartesian coordinates of the points of 

the system)  and  m (number of the independent constraints), we can say 

that n is the “number of degrees of freedom” of the system, or that n is 

“the degree of freedom of the system”. 

Examples:  

i)  a point free (unconstrained)  in space has three degrees of freedom ( 3-0); 

ii) a point constrained to move on a surface has 3-1 =2 degrees of freedom; 

iii) a point constrained to move on a line (which is determined by two equations in 

space), has 3-2 =1 degrees of freedom; 

iv) a system consisting of two points at a constant distance has 3 x 2 -1 = 5 

degrees of freedom; 

v) a rigid free system consisting of N points has 3N – (3N-6) =6  degrees of 

freedom. As this number 6 is independent of the number of points N, also  a rigid 

body, which we can treat as if it were a system consisting of a very large number 

N of mass points still has 6 degrees of freedom.  They reduce to 3 if one point is 

fixed. 

We say that a system has  n degrees of freedom, because in order to fully 

know at each instant  t  the configuration of the system, it is sufficient to 

know the value of only n among the 3N coordinates. Indeed, once they are 
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known, the m equations (6), which are independent, give the values of all 

3N-n (=m) remaining coordinates.  If you prefer, just think that n+m=3N: 

you know  n  coordinates, and you derive the remaining  m  from the m 

constraint equations. 

 

2.2. Lagrangian coordinates of a holonomic system 

The fact that  the knowledge of  n  (= 3N-m)  independent cartesian 

coordinates is sufficient to determine the configuration of the system, 

suggests a new possibility, that instead of  the n independent cartesian 

coordinates, one uses n new parameters (q1, q2, ... qn), also independent 

from each other (plus the time, if necessary), to determine the 3N 

Cartesian coordinates of all points of the system as follows:  

             

                   

                    
                   

                                            

     

That is  

                                                                   

For example, if P is a single point on the surface of a sphere of constant 

radius r , the constraint equation must be respected   

             

and for this reason P  has only two degrees of freedom, expressed by two 

coordinates       . We can select for    the co-latitude θ, and for    the 

longitude φ, and the (7) becomes: 

x =                                         . 

We can see that the (7) represent a holonomic system with n degrees of 

freedom, i.e a system with 3N-n = m positional bilateral constraints. To do 

so, we can think of obtaining the n  values of the qi from n of the 3N  
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equations in (7)  as function of the      ,      If we substitute these values, 

now in terms of the       ,   , in the remaining 3N-n = m relationships, we 

obtain precisely m equations in terms of the same variables, which are of 

the form  

                                               …..            t) = 0   (r = 1,2,…m)  

i.e. positional,  bilateral (=holonomic)  constraints. 

Not convinced?  Let’s study the simpler case of  a  point constrained to remain on 

a circumference of  radius 1. The system has two Cartesian coordinates and one 

constraint, and therefore one degree of freedom. The two equations of the two 

Cartesian coordinates expressed in term of q1 =   are:  

x =        and          

Basically, what we want is to show that with these data one can derive the 

equation of the constraint, and that the constraint is holonomic (i.e. positional and 

bilateral).  From the first equation we express     in terms of x. We obtain:  

          

Now we substitute this result in y, and get 

               =       

I remind the student than one of the simplest ways to reconstruct 

such relationship is to draw a suitable triangle: 

                                   

Squaring both terms, we obtain               which is the equation  expressing 

our bilateral, positional constraint.  

(Naming in a different way the catheti provides other not immediate  relationships 

between the inverse trigonometric functions). 

If in equations (7)  time does not appear explicitly, the constraints are time 

independent.   
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The parameters           which are independent among themselves, and 

as many as the degrees of freedom, in honour of Lagrange are called 

“Lagrangian coordinates”. Their time derivatives (                      are 

called “Lagrangian velocities”  (in case  qi has the dimensions of a length, 

then it has the dimension of a velocity,  L/T), and the second derivatives, 

such as     are called “Lagrangian accelerations”. 

The number of degrees of freedom  coincides with the number n of the 

independent parameters           . Once such parameters are fixed, the 

mechanical system is blocked in a given configurations. For example, by 

fixing        φ we block the position of a point  P on the surface of a 

sphere (the system we have considered above). This considerations 

provides an easy way to determine the degrees of freedom of the system:  

The plane double pendulum has two degrees of freedom: we first block the 

angle   and then the angle   , and the double pendulum is “frozen” in 

position.  

 

If one wants a more challenging problem, he can calculate the degrees of 

freedom of a (very essential) bicycle.  

Odd as it may seem, many sites on the Web deal with the problem of the 

number of degrees of freedom of a bicycle. Wikipedia, for the idealized  

“Whipple model” gives a minimum of 7 degrees of freedom. 

i) two for the rear wheel  to fix the contact point on the road plane; 

ii) two (inclination and rotation) of the plane of the rear wheel;  
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iii) one for the rotation of the front wheel with respect to the bicycle frame 

(steering angle); 

iv) one for each wheel to fix the rotation angle of the wheel with respect to 

its axis (total two). 

So far we already have listed seven degrees of freedom, and we know that 

there are many more mobile  parts of the bicycle. 

https://en.wikipedia.org/wiki/Bicycle_and_motorcycle_dynamics 

 

As we have seen, the  lagrangian coordinates can vary independently from 

each other, which indicates that there are  n  (and only n)  elementary 

independent displacements of the system:  any other elementary 

displacement is the resultant of two or more such  elementary 

displacements. 

Examples:  

(i)A point on a spherical surface: two elementary displacements, along the 

meridian (d ) and along the parallel (dφ). Any other displacement is the resultant 

of two such displacements;  

(ii) A rigid body: six elementary displacements are possible, three translations and 

three rotations. Any other displacement is the resultant of two such displacements; 

(iii) A rigid, infinitely thin bar: five elementary displacements, three translations 

and two rotations. The third rigid body rotation, around the line joining the two 

extremes of the bar,  is supposed to leave the bar unchanged. 

 

2.3  Velocity of the points of a holonomic system 

Let’s take the time derivative of 

                                                                

We have just to remember the chain rule of derivation, and the fact that the 
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(q1, q2, ... qn), all depend on time.  Indicating with     the velocity of Pi we 

have: 

                       
   
   

 

   

     
   
  

                          

If the constraints are time independent (or fixed, or scleronomic), then  

   

  
    and the velocities are simply given by: 

 

                                
   
   

 

   

                                

That is, the velocity of all points of the system are linear homogeneous 

functions of the lagrangian velocities – but, I repeat, only if the constraints 

are time-independent. 

 

2.4  Definition of non-holonomic system. 

A system is said to be non-holonomic if it is subjected to  (i) bilateral 

constraints, which (ii)  cannot be reduced  to positional constraints only. 

Therefore, the presence of mobility constraints, together with positional 

constraints, is NOT sufficient to conclude that we are dealing with a non-

holonomic system, because it might happen that, using the relationships 

which represent analytically the positional constraints  (with an integration 

with respect to t), the mobility constraint might be substituted by 

relationships in finite terms between the coordinates, i.e. with positional 

constraints.  Only if this integration is impossible we can say that we are 

confronted with non-holonomic constraints.  

One could show along this line that the constraint of rolling without 

slipping on a plane, for a sphere leads to mobility constraints, which 

cannot be substituted  with positional constraints (and therefore the system 
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is non-holonomic) , while for a cylinder it leads to a mobility constraint, 

which can be substituted by a positional constraint (and therefore such a 

system is holonomic). 

I will now include for completeness an explanation of this statement. 

a) The case of the cylinder rolling without slipping on a plane is simpler: the 

cylinder, of radius R,  can roll (without slipping)  only on a trajectory which is a 

straight line perpendicular to  his axis of rotation. An appropriate (and allowable) 

choice of coordinates can make the cylinder roll along the x-axis. Calling φ the 

angle of rotation of the cylinder with respect to    the vertical passing through the 

contact point, we have that  

        

Or, transforming this relationship into one involving the velocities, 

        , which can be integrated as Rφ –x = C, a positional constraint, which 

makes the system  holonomic. 

b)  Following Goldstein (p. 15) let’s now take a limiting case of the cylinder: an 

extremely thin cylinder of radius r, which also rolls without slipping on the 

plane. Now, the thinness of the cylinder allows it  to spin around the vertical axis 

going through the point of contact, a case similar to that of a sphere.  As is well 

known, the point of contact is at rest instant by instant, as, contrary to the 

appearance, it is the center of rotation of the wheel. 

        

Still, the velocity of the center of the disk is linked to the speed of rotation of the 

angle φ, as: 

       

But now a new variable θ has entered the game, forcing us to introduce also a 

variable y, and we see that  
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(the minus sign is evident from the diagram). 

Or, in differential form, using         

(1)                                          

(2)                                         

Can these two forms be transformed into exact differentials, or, if we prefer, can 

they be turned into forms like:  

            (3)        
  

  
    

  

  
    

  

  
    

  

  
       

Let’s take eq.(1), and rewrite it as  

                     

For it to be an exact differential, we should have, as is well known,  

X =1 =  
  

  
;   Φ =        

  

  
;     Y = 

  

  
          

  

  
   

which entails  

 
  

  
  

  

  
  ( and all similar pairs, with exchanged coordinates)  both sides being 

equal to    
    

     
  and the others likewise. 

In the form given, some such equations are not satisfied  because , for example 
  

  
           while 

  

  
 =0, besides the example already given 

  

  
    

  

  
  . 

Thus, in the form we have them, neither of the two equations is an exact 

differential (actually we have shown such a result  only for one of the two 

equations, but the other has exactly the same problem).   

However, we could think of finding an “integrating factor” z, i.e, in this case, a 

function of  x,y,     which, multiplied by the whole equation (3), will turn at 

least one of the two first member functions into an exact differential.  Let’s 

examine Eq.(1)  

Here it  is impossible to find an integrating factor, however, because, for example,  

zΘ = 0  while zΦ cannot become 0 unless z  is zero itself, which, as an integrating 

factor, makes it useless.  
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We conclude that such mobility constraint s  cannot be substituted  with positional 

constraints (and therefore the system  is non-holonomic). 

 

2.5 Lagrangian coordinates, and degree of freedom of a non holonomic 

system. 

 

Let’s now consider a non-holonomic system, and let the positional 

bilateral constraints be: 

                                        …..           t) = 0   (r= 1,2,…μ) 

And the bilateral mobility constraints 

(11)                                  
 
              (j= 1,2,…ν) 

Also in this case the (10) will allow us to introduce  n (= 3N-μ)  

parameters q1, q2…qn, as we have seen for fully holonomic systems. We 

will still call such parameters “lagrangian coordinates” of the non-

holonomic system, with which we will express all 3N Cartesian 

coordinates of the system points, in the form:  

              

                   

                    
                   

                                            

 

However, the existence of the (11), tells us that the q1, q2, …qn   will no 

longer be independent.  The (11), instead,  tell us that between the 

increments dq1, dq2…dqn , which  the lagrangian coordinates receive while 

going from one configuration of the system to another, infinitely close the 

initial one, only  n – ν can be arbitrarily assigned, while the remaining 

ones, ν, result from them, being  determined by the (11).  

Thus one can see that the number of lagrangian coordinates which can be 

made to vary arbitrarily to define a displacement of the system is not equal 



19 
 

to  n, but to  n – ν; and it is this number (instead of  n) which is called 

“degree of freedom” of the system.  

It remains to be said that, for what concerns the non-holonomic systems, 

the velocities of the system points will still be given by the (8) or (9), 

where one must remember that the lagrangian velocities     are not 

independent, but are now linked together by the relationships (11). 
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3. Virtual displacements.  

The obstinate reader which is reading the introduction to analytical mechanics on 

this essay or other more important books, is now about to meet one of the most 

extraordinary creations of human mind in the field of mechanics, comparable to 

the Newton Laws.  Of course, one can deal with the subject with a certain light-

heartedness, giving the definition of virtual displacements as one concept like 

many, which, in addition, is now all but out of fashion.  We are more or less 

accustomed to it, and might not appreciate the original, revolutionary idea, of 

building the whole of mechanics on an abstract concept.  Because virtual 

displacements, in principle, do not exist.  

3.1   Given an arbitrary mechanical system, consisting of points  P1, P2, 

…Pn, we call (elementary) “effective displacement of the system”, 

corresponding to given applied forces, in the infinitesimal time  interval  (t, 

t+dt), the totality of all displacements dPi, which the points Pi perform in 

the time interval dt, consistent with  the constraints applied to the system. 

Together with effective or “actual” displacement of the system, one can 

also consider all other infinite displacements, which the system could 

perform under different applied forces: these are called “possible 

displacements”.  If the constraints are time-independent (or scleronomic), 

one does not consider any other types of displacements. However, if the 

constraints are time-dependent (rheonomic), together with the “possible” 

displacements (which include the “effective” displacements), we consider 

also another type of displacements, the so-called “virtual displacements”.  

More precisely,  having fixed a time t0, and having taken into 

consideration the infinitesimal time interval (t0, t0 + dt), we suppose that 

during this time interval the constraints do not vary, but remain “frozen” in 

the configuration they had at the time t0.  The elementary  displacements 

which the system could perform in this case in the time interval dt, are 

called “virtual displacements corresponding to the instant t0”. 
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In other words, “the virtual displacements of the system corresponding to 

the instant t0  are the elementary displacements consistent with the 

constraints “frozen” at the instant t0”. 

Simple examples of virtual displacement can be figured out by thinking of  

a rigid surface (such as a plane) uniformly moving in space, or a surface 

changing its shape (such as a sphere with a fixed centre, O, and a radius 

r(t) , varying in time according to a given law).   

In the first case, the virtual displacements  corresponding to the time t0, are 

all the elementary displacements of the point on the plane “fixed” in the 

position it had at the instant t0;  

 

AB: an effective displacement compatible with the motion of the 

constraining plane in the time interval  (t0, t0 + dt); 

AC: a virtual displacement compatible with the constraining plane frozen at 

the instant t0 in the interval dt. 

 

in the second case the virtual displacements  are all the elementary 

displacements on the sphere of center O, and radius r(t0). 

 



22 
 

 

AB: an effective displacement compatible with the changing shape of the 

constraining sphere in the time interval  (t0, t0 + dt). Here we have assigned 

an expansion, which is linear in time.  

 AC: a virtual displacement compatible with the shape of the constraining 

sphere frozen at the instant t0 in the interval dt.   

 

3.2  Whatever be the system, to indicate the elementary variation of any 

physical quantity which occurs in the course of a virtual displacement, the 

symbol   δ is adopted (followed by the symbol proper to the quantity being 

considered), while  to indicate the variation which occurs during an 

effective displacement, the symbol d  is used (followed by the symbol 

proper to the quantity being considered).  Thus  dPi  and δPi respectively 

will be the effective elementary displacement and the virtual displacement 

of point Pi; dqi and δqi, the elementary effective  and the virtual variations 

of the lagrangian coordinate qi.  Be it clear, however, that, independently 

of the symbols used,  in both cases we are  dealing with differentials. 

 

In the case of a holonomic system with n degrees of freedom, taking 

account of (8) we have for the effective and for the virtual elementary 

displacements dPi  and δPi  the remarkable expressions: 

                       
   
   

 

   

     
   
  

                 

And  
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If, in addition, we are dealing with  a rigid system, recalling that  for the 

elementary displacement of one of his points, Pi, we have the expression 

                           

I remind the student that this equation descends from the formula:  

      

  
  

  

  
 - 

  

  
  

   

  
  

   

  
  

    

  
                                       

In which, while the coordinates x,y,z of the P  fixed in the rigid system are 

constant, the time derivatives of               are given by Poisson formulae: 
   

  
 

                e the vectors              , are the unit vectors along the principal Cartesian 

axes. 

Or, setting         
  

  
     

                         

We have, for the virtual displacement, the expression: 

                         

 

3.3   Ordinarily, virtual displacements are not possible displacements. It is 

obvious, however, that if  we are dealing with time-independent 

constraints, the virtual displacements identify themselves with the possible 

displacements , and, on the other hand, the effective displacement is one 

particular virtual displacement. 

Virtual displacements can be either invertible/ reversible  or not 

invertible/irreversible, depending on whether they can happen in both 

directions or only in one of them. For example, for  a body standing on a 

supporting surface,  a displacement is invertible  if it is tangent to the 
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surface, because it can occur  either toward the left or toward the right.  On 

the other hand, a displacement which tends to detach the body from the 

surface is  not invertible, because the opposite displacement (through the 

surface) is obviously impossible.  

 

We conclude this section by noting that, if the system is non-holonomic, 

nothing needs to be added to what we just said: virtual displacements 

corresponding to the time to are those displacements which are compatible 

with all the constraints applied to the system, considered as fixed in the 

configuration they have at the instant to.  

 

3.4.  If       is the force acting on point Pi, we define “Virtual work” 

which the force         performs for the virtual displacement δPi  

corresponding to the instant to, the internal product 

                  

For “virtual work of a system of forces            (I =1,2 … N) “ acting 

respectively on the points Pi of a material system we define the sum of the 

virtual works of each of them: 
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4. Constraint equations. Frictionless constraints. 

4.1  Given a constrained system (or system subjected to constraints), we 

call “active forces” the forces acting on the points of the system, 

independently of the existence of the constraints, while we call “reactive 

forces” or “constraint reactions” the forces which the constraints  exert on 

the system.  We will indicate the first ones with the symbol         and the 

second ones with            

While the active forces are known a priori, this is not the case with the 

constraint reactions.  They are therefore supplementary unknowns. In 

general, mechanical problems do not require the calculation of such forces, 

and therefore one attempts to eliminate them from the calculations.  In 

fact, the problem of their determination, if  required, is usually tackled  

aside from the main problem, after the (statical or dynamical) 

configuration of the system under the action of the “active forces” has 

been determined.  

To arrive at the elimination of the reactive, constraint forces, one start 

from observing that , if the constraints are time independent and 

frictionless, the constraint reactions , even if variable, perform zero work 

during the motion (as it happens, for example, in the case of a heavy mass 

point moving on a frictionless horizontal plane).  This is not the case if the 

constraint varies with time: consider the same case of a heavy mass point 

on a plane, when the point is immobile on the plane, but the plane moves 

parallel to itself. 

However, the notion of constraint is an abstract, schematic concept, which 

was introduced to facilitate the solution of mechanical problems:  in 

general, a constraint is nothing but the simplified image  of a real, more 

complex phenomenon.  Thus, the motion we mentioned above, of a point 

mass on a rigid horizontal plane,  is nothing but the schematization of the 

real motion of the body, which moves on the surface of an elastic body, 
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slightly deforming it under the action of its own weight. When we 

substitute this “physical” surface with the abstract entity represented by a 

rigid plane, we, de facto, substitute to real and continuous reactive forces 

some abstract and discontinuous constraint reactions.  For example, the 

discontinuity becomes evident when we detach the point from a rigid 

plane, the constraint being unilateral: here, the constraint reaction 

instantaneously stops acting on the point.  

Such forces, discontinuous functions of the position coordinates, are not 

considered as such in Vectorial Mechanics (the first step in Mechanics) 

and therefore it is necessary to introduce a new postulate to include them 

in an acceptable mathematical description: such a postulate is  accepting as 

the definition of “frictionless constraints” those for which “the virtual 

work of reactive forces is zero if all constraints are bilateral, and either 

positive or zero if at least one of the constraints is  unilateral”, in one word 

those constraints for which  

                                                               

 

   

 

Here, the sign  “ =” is applied to reversible displacements, and the sign 

“   is applied to irreversible displacements. Simple examples like the one 

quoted above (the mass point moving on a plane and subjected either to a 

bilateral or to a unilateral constraint) verify the plausibility of the 

postulate/definition.  

We are not going to discuss the principle of virtual works, which is 

generally well illustrated in texts of vectorial mechanics. We only make 

two remarks: 

i) The definition of the principle:  

The necessary ad sufficient condition for a material system  with 

frictionless constraints to be  in equilibrium is that  the virtual work of the 

active forces,        acting on the system be zero if all constraints are 
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bilateral, negative or zero if at least one of the constraints is unilateral, 

namely 

                                                         

 

   

      

2) A comment: 

With the above postulate/definition  of frictionless constraints, the 

principle of virtual works becomes  the “theorem of virtual works” , 

because  the relationship (2) can be demonstrated by means of (1).  

This statement descends from  the fact that for a system  in equilibrium , for 

each point Pi it must be true that the resultant of all forces acting on it (      is 

equal and opposite to the resultant of all constraint reactions (      , or: 

             

Therefore, the total virtual work of active forces,  

  =          
 
                 

 
        

 

Note that at this point, somewhat magically, the constraint forces are gone, 

and  one can work with the active forces only. 

 

The fundamental importance of the principle of virtual works  is well 

known. Lagrange put it at the basis of all of Rational Mechanics and  

Equation (2) is known as  “symbolic relationship of Statics”. But, as we 

will shortly show, a slight modification makes of it the basis of both 

Statics and Dynamics. 

 

Conclusion. 

In any serious science, there is no way to escape the need for non-

demonstrable principles. The Laws of Newton were examples of such 

principles, and their success (especially in solving  some celestial 
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mechanics problems) put them on a firm basis. However, they were 

justified by the results of their application.  In the above section we have 

seen that  the “principle of virtual works”, therefore not demonstrable, can 

become a theorem (and therefore is demonstrated) at the cost of 

introducing another principle, disguised as a definition of “frictionless 

constraints”. 

 The purpose of the principle (in any of the two forms given) is that of  

“simplifying the laws of Newton”, by eliminating the constraint reactions 

from our equations. This can be done if : 

a) the constraints are frictionless; 

b) the constraints are time independent or, more in general, we deal with 

virtual displacements (which assume that the constraints are fixed in time).  

The principle cannot be proved, but can be verified, and this is what most 

textbooks do.   We leave the interested student to such developments and 

we go straight to an exciting amplification of the principle. 

 

A simple verification for a point on a plane. 

 If the point is constrained to stay on the plane (bilateral constraint), the fact that 

the constraint is frictionless means that the constraint reaction is normal to the 

plane, and therefore its internal product with the virtual displacements is zero. 
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5. D’Alembert Principle and its consequences 

It would be interesting to know the mental procedures of the great mathematicians 

of the past.  In the case of D’Alembert’s Principle I think that he must have 

noticed that finding the solution of all mechanical problems, regardless whether of 

Statics or Dynamics, amounts to solving certain finite or differential equations, 

showing that a certain left hand element is equal to an appropriate right hand 

element.  If we are dealing  with forces, it means that certain forces are equal to 

other forces. In other words, an equilibrium of forces comes into play.  In Statics, 

for example, we look for equilibrium between active forces and constraint 

reaction (forces).  

Equilibrium in general means that the system is not moving, but after all also 

Newton’s Law , written as  

                                                                  

can be interpreted as the equilibrium of two elements, and  its solution provides 

the motion of the system  being considered.  Let’s see how, through D’Alembert’s 

principle, together with the principle of virtual works, any problem of general 

dynamics can be treated as problem of statics.  

 

1. The fundamental problem of dynamics consists of the determination of 

the motion of any given mechanical system, acted upon by a given system 

of  forces. Such a definition is, in a sense, a major contribution of Newton, 

who set the problem in this clear way, even giving a semi-tautological 

definition of what a force is (Def. IV:  An impress'd force is an action exerted upon a 

body, in order to change its state, either of rest, or of moving uniformly forward in a right line). 

A mechanical system,  for us, will be  a system of N mass points Pi 

(i=1,2,…N), each endowed with mass mi.  Each point will be acted upon 

by various forces, whose resultant will be called        . We will thus consider 

a system of N forces        applied to N points Pi  respectively. We consider 

such forces as known if they are expressed as functions of the 

configuration of the system, the simultaneous velocities of the N points and 

time. 
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If the N points are free, as is the case of N bodies in celestial mechanics, 

and the system of forces acting on the system is known, the problem is 

immediately translated into equations.   In fact, by applying to each of the 

N points the fundamental equation of dynamics, one has N equations: 

                                                                               

Here,        is the acceleration of the generic point Pi, with reference to a 

Galileian system (i.e. and inertial system, either at rest with respect to the 

fixed stars, or in rectilinear uniform motion). 

If we indicate with  xi , yi  , zi the coordinates of Pi with respect to this 

inertial system, and with  Xi , Yi , Zi  the Cartesian components of the force 

      , then  the N vector equations (1), projected on the coordinate axes 

O(x,y,z) produce the 3N scalar equations: 

                                                 ,                  (i = 1,2,…N), 

where, in general, the           are functions of the 6N +1 arguments xi, yi, 

zi,                (I = 1, 2…N). 

We thus have a system       of 3N ordinary differential equations of the 

second order, in the  3N unknown functions  xi, yi, zi, of the unique 

independent variable, t.   

As is well known, in general, system      cannot be solved in finite terms. 

However, well known theorems of existence make us sure that, under very 

broad conditions for the functions           , system      admits a general 

integral depending  on 6N arbitrary constant. We can thus say that for the 

N free points Pi, acted upon by the given system of forces, there are     

different possible motions, and each of them can be identified for example 

by giving the initial position of the system and the initial velocities of  all 

single points. 

The case we have just considered, practically, applies only to celestial 

mechanics. The forces being considered in celestial mechanics are of the 

“positional” type.  
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In the majority of cases, on the other hand, one is brought to consider 

constrained material systems.  Now, as is well known, in a system of N 

point masses Pi, under any constraints, the actions of the latter  on each 

point of the system, is equivalent to a fictitious force, which is called 

reaction or constraint force.  It follows that the given system can be 

considered as a system of N free points, each of them being subjected to 

the simultaneous action of the resultant of the active forces directly applied 

to it, and at the same time to the resultant of the reactions which express 

the action of the constraint on it. 

I note en passant that this is a remarkable generalization of the concept of force, 

which we are accustomed to accept uncritically. If we consider the so called 

“active” forces, such as gravitation, and others, both  known at the times of 

Newton and later, the reactions exerted by the constraints have no similarity to 

them. For example, reactions come into existence only when active forces start 

acting on constrained points. In contrast, an active force such as gravitation  is 

“always there”.    However, we are helped by the fact that the constraint reactions  

can be represented by vectors, and, in the case of Statics, they contribute to the 

equilibrium of the point by opposing the active forces.  Still, as we  wrote above, 

“…forces [are] known if they are expressed as functions of the configuration of 

the system, the simultaneous velocities of the N points and time” and, as far as 

Classical Mechanics is concerned, this is not the case of constraint reactions. 

 

It follows that also in the more general case of constrained systems 

equation (1) is valid, provided we interpret  each          as the resultant of 

both active and reactive forces acting on Pi.   Unfortunately, while we 

know the active forces and the ways the constraints act on the system, the 

corresponding reactive forces are unknown, and assume the character of 

auxiliary unknowns.  Equations (1), therefore, for the motion of a 

constrained system, have the character of a provisional approach.    

If one is  only interested in the motion of the system, the need arises to 

eliminate from equation (1) the constraint reactions, in order to have, for 

the determination of the motion, differential equations uniquely depending 

of the direct data of the  problem.   
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It can be shown that on the basis of (i) the classification of active and 

constraint forces, (ii) under the hypothesis of frictionless constraints, the 

elimination of the unknown reactions from the differential equations of the 

motion can be carried out in general and in a so-to-speak automatic way, 

on the basis of the Principle of Virtual Works,  and of D’Alembert 

Principle, thus arriving at the classical Lagrange Equation of the Second 

form. These are dealt with at large in any textbook on Classical 

Mechanics. 

On the other hand, if one is interested  in  calculating also  the constraint 

reactions besides the motion of the system, the same principles of Virtual 

Work and D’Alembert Principle allowed Lagrange to formulate his 

equation in the first form, which, although much more cumbersome than 

the second form equations, completely solve the problem.  It is to these 

equations that I shall dedicate, in a very introductory way,  the remaining 

sections of this essay. 

2.  By classifying the forces acting on point Pi in active  (Fi)  and constraint 

forces (Ri) , equation (1) becomes: 

                                                                                           

which can be written  as   

                                                                                         

We can interpret each             , which is a vector and has the dimensions of 

a force, as a fictitious force, which we shall call “inertial force concerning 

point Pi” . Equation (3) thus tells us that, in the course of the motion of a 

material system,  acted upon by whatever forces and constraints, active 

forces, inertial forces and constraint reactions are in equilibrium at each 

instant. 

If we do not want to promote the action of the constraints to the rank of 

forces, we can also say that   (I.) in the course of the motion of a material 

system, acted upon by whatever forces and constraints, active forces, and 
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inertial forces are in equilibrium at each instant  thanks to the action of 

the constraints. 

This is quite a remarkable shift in focus.  We can perform another easy 

trick by writing:  

                                                                                                 

By so doing we split the active force         into two components- 

The first component,             , represents the “force” which could impress 

on point Pi,   if it were free, the same motion which it acquires under the 

combined action of the whole force         and of the constraints. We can call 

it the “effective component of the force      ”. 

The second component,                         , the sum of the active force and 

the force of inertia, represents the part of       , which is, so to speak, lost 

because of the constraints.  Therefore traditionally it received the name of 

“lost force”. 

We can thus enunciate D’Alembert’s Principle:   

(II) “in the course of the motion of a material system, acted upon by 

whatever forces and constraints, in each instant the lost forces  are in 

equilibrium thanks to the action of the constraints”. 

We have just changed statement (I) into (II) substituting the wording 

“active forces and inertial forces ” with the wording “Lost forces”.  Still, 

the importance of D’Alembert’s Principle is remarkable, because it 

reduces a problem of general dynamics to a problem of statics, the 

problem of the “equilibrium of the lost forces”.  But in Statics we have 

another principle ready to be applied to  systems subjected to frictionless 

constraints, admitting virtual displacements, which are all invertible: the 

Principle of Virtual Works. 

In the case of statics, the equilibrium conditions are all included in the 

equation:  
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  =          
 
       

And here, by applying D’Alembert’s principle, we can characterize the 

motion of the system through the equation:  

  =                           
 
        

the so-called “Symbolic equation of Dynamics”. 

We remind the persistent  reader that if the constraints were not invertible, we 

would have a    sign , instead of  the much more comfortable =  sign (see Sec. 

4.1). 

The  Symbolic Equation of Dynamics, which is valid for all dynamical  

systems  with frictionless constraints and admitting only invertible virtual 

displacements, is a direct consequence of the Principle of Virtual Works, 

written as  

  =           
 
       

which is valid  both in equilibrium and in motion conditions, because of 

the relationship  (3),                                  . The latter, immediately 

produces the symbolic equation.  

If the constraints were not invertible, one would have instead  

  =           
 
      

And, consequently,  

  =                           
 
        

Which is called “the symbolic relationship of Dynamics”.  



35 
 

 

6.  The first form of Lagrange’s Equation. 

(A translated paraphrase of notes handed over by  Prof. T. Zeuli, of the University of 

Turin, anno 1962-63) 

 

The study of the motion of a holonomic system consisting of  the points  

Pi ( xi, yi, zi)  (i = 1,2,…N), is now the study  of the “general equation of 

dynamics”,  namely: 

 

(1)                                        
 
                     

 

subjected to the  m  conditions: 

 

(2)                                                                 

 

which represent the constraints to which the system is subjected.  The 

virtual displacements               are vectors whose components are δxi , δyi , 

δzi. As a consequence of (2), the            ( =                are connected by 

the equations 

 

(3)       
   

   
    

   

   
     

   

   
               

                                         

 

 Or, in a more compact form: 

 

(3’)                                     
 
                                . 

 
Certainly I would not need writing these equations, which can be found on many 

analytical mechanics textbooks, were it not because of my personal experience 

based on the difficulties I experienced  at the appropriate time, and the 

observations I made of students who had the same difficulties, which convinced 

me that equations (1) and (3) are  frequently misinterpreted by a hurried reader.  
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As we said earlier, equation (1) represents the total virtual work done  by 

the lost forces on all points the system consists of, and it is a single 

equation , which – as is -cannot be disentangled, because the 

displacements             are linked together by equation (3) and     .  The 

equation given in the form (1) can lead the reader into error because he 

could absentmindedly consider that this is not a single equation, but a set 

of N equations, more or less the same set which will immediately appear 

thanks to the stroke of genius of Lagrange.  In fact the idea of Lagrange 

was that of introducing  m undetermined coefficients λ r, which are 

multiplied “in an orderly way “(to be exemplified below), by the        and 

added to (1), thus obtaining 

 

(4)                             
 
                       

 
              

 

As the    are undetermined, we can use (or hope to use)  them to make 

equal to zero each parenthesis appearing in (4), which at this point still is a 

single equation.  In other words, each parenthesis becomes an equation 

with     as unknown and, as we shall see in the minimal example of 

section 7, what one does is to attempt to solve each of the N “parenthesis”  

independently (which generally is possible in textbook exercises). Once 

the solutions are found and all parentheses are equal to zero, whether the 

             are linked together or not  becomes  irrelevant, because the effect of 

the constraints is already taken into account in the summation of the 

gradients. 

 

In other words, we can transform the single,  generally unmanageable 

equation (1)  into the N vector equations 

  

(5)                                                    
 
      

 

Or, equivalently, into the 3N scalar equations: 
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which, together with the m equations expressing the constraints 

(2)                                                                 

 

Form a system in the  3N + m  unknowns 

(                              . 

(Use has been made of the relationship           =    
   

   
    

   

   
      

   

   
  ) 

 

Equations             together are the first form of Lagrange’s 

equations.  And they can characterize all possible motions  of the 

holonomic system under exam. Their beauty resides in the fact that all 

variables are treated in a completely symmetrical way.  On the down side 

we must admit that we must now cope with a larger number of equations 

(3N+m), which most of the time are quite difficult, if not impossible to 

solve.  

 But there is more to the First Form Equation. First of all, they can be 

written directly and  are formulated in the natural system of coordinates, 

i.e. Cartesian coordinates.  No efforts of imagination  are necessary to 

discover the degrees of freedom and any set of generalized coordinates.   

Moreover, they afford more information than the celebrated Equations of 

the second type, because the so called “ Lagrange multipliers”     have a 
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remarkable mechanical meaning.  If we compare the equations (5) with the 

equation of motion of the given system, i.e.  

                        

where          is the resultant of the constraint reactions acting on Pi , we 

obtain the expression: 

                                             . 

This means that the reactions of the constraints will be determined once we 

will know the quantities         , resulting from the solution of our 

system of 3N+m equations. 

A simple example is the equation of the motion of a point mass on a 

surface whose equation is f(x,y,z,t)=0 , which is allowed to vary with time. 

It is: 

                    ,  where   f(x,y,z,t)=0. 

 

No doubt, the results thus obtained afford a complete solution of the 

problem of the motion of the system, giving us, in addition, also the values 

of the reactions of the constraints. However, now we must deal with 3N+m 

equations, far more than the number of the degrees of freedom of the 

mechanical system, which is 3N-m = n.  

If we just wish to determine the motion of the system, and not , in addition, 

the reactions of the constraints, it is possible to extract form D’Alembert’s 

Principle  a system of n equations, the Second form of the Lagrange 

equations.  These are the major glory of Lagrange, but I will not deal with 

them in this page: they are not Cinderellas at all. 

Yet, I would like to add at this point a remark made by Sommerfeld, which 

stresses  one more advantage of  our true Cinderellas. 
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“So far, we have assumed that the constraint are holonomic; we can easily 

convince ourselves that all the preceding can be carried over to the case of 

non-holonomic constraints, with only slight modifications. The only 

difference is that the components of the gradients must now be replaced by 

functions of the coordinates, which cannot  be written in the form of 

partial derivatives of functions” (Mechanics, p.67).  

Thus, problems which are not tractable by means of the Lagrange 

equations of the second form alone, can become tractable by using the 

Equations of the first form. In fact, to reduce the number of equations to be 

solved, various authors propose examples and  exercises in a hybrid form 

for non-holonomic systems, in which the Newton equations ( totaling 3N 

equations) appearing in the First Form equations  are substituted by 

Lagrange’s equations of the second form (totaling 3N-m equations), which 

take care of the m  holonomic constraints, to which  ν  Lagrange 

multipliers are added to take care of the ν non holonomic constraints – thus 

going partially back to the first form. This is more or less directly 

suggested by the author, Prof. Zeuli, to which this essay is dedicated, in his 

section 2.5, given above. 
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7. The simplest problem which can be solved via the Lagrange 

Equation of the first form.   

(In my opinion) the simplest  problem is that of a point mass constrained to 

move on a circumference under the action of no forces.   

One might think that the problem of a point mass constrained to move on a 

straight line under the action of no forces is even simpler. That’s true.  

However, I think than such a problem is really too simple, and does not 

open the window on a broader and more attractive landscape.  In fact, an 

accurate choice of coordinates immediately kills the lagrangian multiplier, 

the window is so to speak slammed closed, and we go straight back to 

Newton’s equation, whose solution is a particle moving with constant 

speed.  

Leaving this remark aside,  to simplify as much as possible the formalism 

of the problem I have chosen , we set the mass of the mass point  m = 1.  

The constraint is represented by the equation 

           

We thus have our  single first form equation written as: 

                                      

The term  2λx comes from the  expression  
             

  
 and the term 

     likewise. Note also that  X = Y = 0, as no forces are acting on the 

mass point.  The stroke of genius of Lagrange, as we said,  is that  the 

undetermined multiplier λ can be determined in such a way as to allow us 

to separate the two term multiplying  δx and  δy respectively in the 

equation. To do so we assume that the task can be accomplished, we 

separate the equations and we see whether we can solve them, thus setting 

both equal to zero, which achieves the separation.  
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One could object: “But why to use the multipliers? We can set to zero both 

equations separately also without including the λ-terms!” Correct, but by 

so doing we solve a different problem, the problem of a free particle (in 

this case in two dimensions), which, as we know, in the absence of forces 

moves at uniform speed on a straight line, as we would immediately find 

out by solving the two resulting equations.  This is not our original 

problem. Our two particles must stay on a circle.  

We have instead:  

        

        

      1   

Just for fun, if we had a particle constrained to move on a 

straight line, we could chose the constraint as y = 0 (particle 

moving on the x axis). 

The single first form equation would have been: 

                                      

That is:  

     

     

    

Whose solution is   x =          , 

                                y = 0 

i.e. a uniform motion on a straight line, the x axis.  Here   

disappears: indeed  no constraint is necessary to keep a mass 

point on a straight line at constant speed  in the absence of 

forces: it is Newton’s First Law! 

 

In our case, the two equations  
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can be easily solved, giving: 

                             

                             

 

For our initial conditions we are free to select any point on the 

circumference 

         0 

such as      = R,    = 0), and an arbitrary initial speed v along the y axis,  

such as (                    in which  case  A= R, that is: 

        

And       , and  therefore C = 0. 

 

The components of the initial velocity are thus  

         = 0, or  B=0  

              

We thus have: 

(I) 
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From which, and from the equation of the constraint,  

                          
 

    
 
 
                   

The equation of the constraint  is thus verified only if    
 

    
 
 
     

Which gives:      
  

  
.  We can also define an “angular velocity”        

      
 

 
 .   

 

Thus, the resulting motion is a rotation at constant speed, or with constant 

angular velocity  v/R . The suggested generalized coordinate is 

      which we can call, for example, θ. 

 

What is interesting to me is that we start with two Cartesian coordinates, 

one of which is redundant, and we end up with a clear suggestion of a 

single non-Cartesian coordinate, which could be adopted as our single 

generalized q.   

In other words, had we a much more complex problem, we might even 

hope that our “Cinderellas” could suggest to us the most appropriate 

generalized coordinates to treat the problem.  
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8. Some considerations 

The pebbles I hope I have helped to extract from the shoes of some 

interested students are quite important and often overlooked. As we have 

seen, the principle of virtual works (PVW), normally used to solve a few 

equilibrium problems, and today quickly discarded, is a remarkable 

conceptual step. It was put by Lagrange at the basis of Statics and 

Dynamics, and can be said to be the door to  Analytical mechanics. Yet, its 

importance is downplayed by most advanced mechanics tests. The 

principle is not even mentioned in the “Mechanics” textbook of the 

monumental work by  Landau. In fact, the much more celebrated Lagrange 

Equation of the second form can be obtained without invoking the PVW at 

all, and Landau, more practically oriented, simply writes (§2) that “the 

most general formulation of the law governing the motion of mechanical 

systems is the principle of least action, or Hamilton’s principle” etc.  From 

this statement follows an Euler-like derivation of the equation of the 

second form, as the solution of a “variational problem”, which leads to the 

so called “Euler –Lagrange “ equations.  It is amazing that the same 

equations can be reached in two totally different ways, but this point is 

seldom elaborated. However, it was not lost on Hamilton, and others.  

Like Landau, Corben and Stehle never mention the principle of virtual 

works, but in equation 2.9 they  introduce in a sneaky way the virtual 

displacements, without naming them: “we consider a small displacement 

of the particle defined by changes     in the   , with t held fixed etc.  As 

we have seen, the four word sentence  “with t held fixed” conceals a world 

of reasoning.  

The PVW is mentioned and its application to dynamics is clarified in the 

work by Goldstein. But here again no mention is made of the Lagrange 

Equation of the first form. On the other hand they are used when non-

holonomic constraints are introduced.  Our    are called by Goldstein 

“undetermined multipliers”, and no attempt is made to identify them in any  

way with the multipliers appearing in other  problems of constrained 

maxima, i.e., as a typical example,  the problem  to maximize (in 2 
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dimension) a function f(x,y)  subjected to the restriction that the maximum 

is constrained to belong to the curve g(x,y).  This is how most student meet 

the Lagrange multipliers the first time in their life. 

The question is whether Lagrange gave the same name to all undetermined 

coefficients he needed, no matter how different were the conditions of the 

applications, or he saw any connection between the different cases.  

After a certain amount of brain searching I venture the hypothesis that the 

relationship between the problem of constrained extrema and the First 

form  of Lagrange’s equations arises from the equations of  Statics for the 

case of a frictionless surface.  In this case Statics produces equations 

which are quite similar to the First Form of Lagrange Equation. In fact, in 

the ideal case of a such a frictionless surface, the tangential component of 

the constraint reaction is zero and the reaction is fully normal to the 

surface, i.e. along the components of the gradient, albeit with an unknown 

value, which we can call  λ.  In this case, the equilibrium equation  

         

Becomes 

                                                               ,   

     where            C is the equation of the frictionless surface.   

But now, if    were derived from a potential U(x,y,z), then we would be 

indeed looking for  the constrained extremum (whether maximum or 

minimum, depends on the convention we adopt that the Force is the 

gradient of U or the opposite of the gradient of U) of the potential, and we 

would be back to the original use of the Lagrange multipliers, we first met 

in analysis.   

                                                                ,   

The equipotential surface U(x,y,z) = constant going through the 

equilibrium position is, in general, tangent to the surface f(x,y) =C going 
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through that point. Indeed, in that point, the vectors grad U  and grad f  are 

parallel, as  equation (b) tells us. 

D’Alembert’s Principle will put             in the place of         , and the 

Lagrange multiplier λ will appear in a formally similar context: 

                          

 but  having assumed a different meaning. 

This is as far as I can go without too much hand waving. 
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9. Conclusions. 

 

“What is the use of  Analytic Mechanics?” , asked a young  lady student  to Prof. Zeuli. And he 

answered:”Nothing is of  use, as long as you don’t know it”. 

 

I owe much to Prof. T. Zeuli, an excellent teacher who seemed to take a 

particular pleasure in explaining  the most abstruse concepts of  many 

fields of mathematics and classical mechanics in the most interesting 

possible way. I also owe much to him as a kind gentleman, and I hope that 

this essay will render a sincere, if inadequate homage to his  memory, of a 

worthy successor of the many great mathematicians who illustrated my 

city of Turin. 

 


