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There  are many continuous fractions that produce the number Pi.  I believe that the  first was 

produced by  Lord Brouncker, following a conversation with Wallis. He gave the fascinating result: 

 

without telling  how he had found it. Wallis took pains to demonstrate this development, raising 

Euler's comment that “Wallisius” endeavored to produce a demonstration  "quae penitus ab auctori 

modo diversa esse videtur (= which appears to be far from the method used by the author)" 

(EULER'S INTRODUCTIO IN ANALYSIN INFINITORUM VOL. 1 Chapter 18).  

 



If you search the Web, you frequently find that curious students of math  ask how this beautiful 

formula is demonstrated, constantly receiving the answer that it follows from the Euler theorem on 

the continuous fractions, 

 

with the vaguely ironic assertion that this theorem can be easily demonstrated via mathematical  

induction and allows to convert a series into a continuous fraction and vice versa. Needless to say, 

the real problem is how to demonstrate the above-mentioned theorem, and not the  slightest hint is 

normally given to this effect, aside from what I have just said. Mathematical induction usually 

means that if we can derive the term n from the term n-1, and we know that the first term is valid, 

then the theorem is demonstrated. Frankly, I think that a few more words might be spent on this 

subject telling at least  what is meant by the n and n - 1 terms both in the left and in the right 

member. For example, whoever tries to find out what is meant by “ nth term in the  first member” 

will find that it is not the nth term of the series. 

 

Now, while Euler in his work has the clear intention of building a general theory of continuous 

fractions, in the present  essay I have set to myself  the ridiculously modest purpose of showing (not 

demonstrating) how Lord Brouncker's formula can be reduced to the  well known  Leibniz-Gregory 

series.  Nothing else. Those who want the most general theory have just to read the text of Euler, or 

more modern texts, almost all shorter - not all more immediate. 

 

For convenience, I write a generic continuous fraction in the form: 

     
 

   
 

  
 

  
 
  

 

 

By stopping  the fraction at the first summand (the "small letter") of the nth denominator, we can 

reconstruct a succession of "convergent" fractions, which have not obvious but interesting 

relationships between each other. The convergents are not, of course, the terms of a series, but each 



convergent is in itself a better approximation of the number that the continued fraction, whether it 

has a finite number of terms or not, represents. 

Convergents can be easily calculated by hand, if we are just provided with paper, pencil, and much 

patience. However, their calculation does not require any special trick. 

There is a convergent, C0, of order 0, given by 1/0. This “formal” term has been introduced by Euler 

just to show some regularity we will not rely upon. 

The first convergent, C1, which interests us is a. Please remember that we always have to stop at a 

small letter, because it is supposed that what follows is a lesser amount. 

C2  è dato da         
    

 
 

C3 è dato da                 
         

    
 

C4 è dato da:                 = 
                   

         
 

C5  è dato da:                          
                                     

                   
 

  

Besides the fact that the expressions lengthen, there is nothing new to be learned  from the 

convergents which follow. It should be said, however, that at this point it seems that Euler amused 

himself to show  that it is not necessary to do all the - let's admit it  - tedious operations, but there is 

a relatively straightforward generation law for the successive convergents. If you find it without 

help you are good: only let me tell that it allows to construct the numerator and denominator of the 

convergent n using both the convergent n-1 and the convergent n-2. One of the two is not enough.  

 

It can also be shown that, calling z the value of the continuous fraction, the various convergents are 

alternatively greater and smaller than z. Since they converge (not by chance they are called 

convergents) such differences will be smaller and smaller. Euler verifies the assumption for the first 

four terms, in which, by generally calling Ri a positive remainder, by which we obtain the z value, 

which is not included in the calculation, we have respectively: 

C0 = 1/0, certainly greater than z; 

C1 = a, certainly less than z = a + R0 

C2 = a + A / b, certainly greater than z = a + A / (b + R1) 

C3 = a + A / ((b + B / c)), less than z = a + A / ( b + B /  (c  + R2) ). 

(In red, we have the terms that "make a difference") 

 

And here comes the “lion's paw”. 



In general, we have, by calling the various convergents Cn  ,the "telescopic"  series 

 

                               

 

which, once it is summed to the nth term, leaves us with the nth convergent, which should be more 

precise than all the preceding ones. This is of course always true, but it is comforting to know that 

the terms are always smaller because the convergents ... converge. The interest, as we said, comes 

from the fact that the last convergent, Cn, is also the sum of the first n terms of the series.  

 

To have the different terms we just need  to calculate the convergent differences as indicated, which 

should become smaller and smaller. But since mathematical rigor does not live on this site, we will 

be happy just  to see that applying our formula, in the case of the number Pi, we actually find 

increasingly small  terms in absolute value. 

So we arm ourselves with patience (or with a suitable mathematics programme doing formal 

algebra) and we calculate the differences of the convergents, which give us the terms of the series 

             

 

The first difference is  a - 0 = a. It will be the first term, S1 of our series. 

Second difference,     
    

 
    

 

  
  

Third difference,                                                  

Fourth difference,                                     
   

                 
 

Fifth difference,                                                 = 

- 
    

                                
 

 

The above result illustrates another property, which could be demonstrated in a rigorous way, that 

the  Si  alternate in sign.  

 

All it remains to do is to see what happens by identifying the terms of Brouncker's continuous 

fraction for π / 4, as follows: 

a = 0, A = 1; 

b = 1, B = 1; 

c = 2, C = 9; 



d = 2, D = 25; 

e = 2 etc. 

 

We get: 

S1= 1 

S2 = - 1/1 * 3 = -1/3 

S3 = + 9/3 * (9 + 2 + 4) = 1/5 

S4 = - 9 * 25 / ((9 + 2 + 4) (25 + 50 + 18 + 4 + 8)) = -9 * 25/1575 = -1/7 

 

The series becomes: 

    

That is, our Gregory series. 

 

Well, let's talk about the emotion mathematics can donate, even to amateurs! Seeing the Gregory 

series emerging  in this way, from these absurdly large terms, I must admit that I experienced some 

emotion. 

It is only a pity that the continued fraction  of Lord Brouncker and the Gregory-Leibniz series, as 

we have seen, converge at the same speed. Five billion terms are required for the Gregory-Leibniz 

series to have Pi with 10 decimal places, from which we can deduce that we need the 5-billionth 

convergent of Lord Brouncker to achieve the same precision, an outrageously long fraction, albeit 

very elegant. 


