
What is the formula for the sum of squares? 
 

With the support of many euristic arguments. 

I assume that the question should be: What is the the sum of the squares of the natural 

numbers from 1 to n.  

The answer is  
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𝑛(𝑛 + 1)(2𝑛 + 1)
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Since the antiquity, the formula is known and has been derived in various ways. Probably, 

only the theorem of Pythagoras has more demonstrations: I may quote, among the 

formulas I know, the “simplest algebraic formula”, Faulhaber's formula and derivatives, 

recurrence formulae, a number of finite differences and derived formulae etc. – up to the 

“mathematical induction principle”.  

The last quoted method  shows that if one sums the squares up to (n+1), that is, adds 

(n+1)^2 to formula (1), he can rearrange the terms in such a way as to reproduce the (1) 

with (n+1) now replacing n everywhere. In other words, if the formula is valid for n, it is 

valid for n+1. Then one shows that the formula is valid, for example, for n=2  (and it is, 

because  1/3+2+8/3=5 =1+2^2 = S(2)), which entails that it is valid for n=3 and then n=4 etc. 

to n=infinity. I have sketched the method because I found it irritating. Nobody tells us 

where formula (1) comes from. Thus, the exercise I have outlined is an excellent example 

to illustrate the mechanisms of the principle of mathematical induction, but not to produce  

formula (1).  

I will now give the most immediate algebraic method to find the complete formula, and 

the simplest graphical way, understandable to an intelligent kid, to get an intuitive grasp 

of formula (1), for the case n=4. Then, if one wants, one can apply the mathematical 

induction, but  - frankly – I think that euristically one can accept the formula without 

further ado.  

 

1.  An exercise in elementary algebra.  

Algebraically, the first thing to do is to realize/demonstrate that the formula for S(n) is a 

polynomial of the third degree in n.  If we know (1), we just look at it, and there we are. 

But what if we don’t?  Well, the first thing to do is to trust our luck and bet on the 

polynomial form, which is the simplest one. Then, if it will not work, we will try 

something more complicated.  



There is something interesting about the powers of natural numbers. Let’s look at the 

differences between consecutive terms (the so-called first differences, for us Δ(1)), then the 

differences between the consecutive first differences (the so-called second differences, for 

us Δ(2)) and so on. 

For example, suppose we have the power 1 

 

Clearly, it is useless to go any further. From the second difference onwards all differences 

Δ(i) will be zero.  

Let’s try with power 2 (multiplied by any coefficient, such as a) 

 

 

As we see, the coefficient  a does not change the fact that the third differences (and all 

higher differences) are zero. 

Let’s try with power 3 (multiplied by any coefficient) 

 

 

Here we see that again the coefficient b does not change the fact that all differences higher 

that the third ones will be zero.  

As an aside I note here that a smart pupil (with some rudiments of calculus) could tell that the 

constant  2, which appears in the differences of the squares, and the constant 6,  which appears in 

the differences of the third powers,  and that zero after the second differences for the squares  and 



after the third differences for the cubes, all sound familiar. In fact, they are the same coefficients 

which appear in the derivatives of x^n.    

Let’s now explore what kind of polynomial is one which expresses the sums of the 

squares. We calculate the first few results by direct sum, 0+1+4+9+16 + 25…., which give: 

S(1)=0, S(1) = 1; S(2)= 5; S(3) = 14; S(4)=30; S(5) = 55…. 

 

 

 

 The coefficients make the 6 disappear, but we can deduce that the highest power in our 

polynomial is n^3. In fact, the lower powers will have disappeared earlier.  

Again, a smart pupil, might notice that if we were to do the integral of x^2 from 0 to n, the answer 

would be (x^3)/3, which would already give the dominant term of our polynomial (1). For very 

large n, the quadratic and linear terms would pale into insignificance.  For example, the three terms 

for n=120 are: n/6 = 20; (n^2)/2 = 7200; (n^3)/3 =576000 (80 times the second power contribution).  

The integral, in fact, is the limit of a sum, as the present cases shows.  

 

Our polynomial will be    S(n) = a + x n+ y n^2 +z n^3, and we will immediately dispose of 

a, because S(0) = 0 and therefore a=0 and  

S(n) = x n+ y n^2 +z n^3. 

Here, x,y,z are the three unknown coefficients of n, n^2, n^3. No more coefficients are 

needed.  Since x, y, z will be the constants for our future formula, we just write three 

equations for n=1, n=2, n=3 and, recalling that S(1) =1, S(2) = 5, S(3)= 14, we will just solve 

the algebraic system: 

{

𝑥 + 𝑦 + 𝑧 = 1
2𝑥 + 4𝑦 + 8𝑧 = 5

3𝑥 + 9𝑦 + 27𝑧 = 14
 

We have now is a simple linear algebraic system in the unknowns x,y,z. One can solve it in 

whatever way he/she prefers, for example by using Cramer’s rule (1750), my favorite for 

theoretical purposes, or Gauss method (which works better for practical purposes) or 



whatever. I hope I will be forgiven if I will not show the straightforward calculations.  

(Incidentally, Cramer must be pronounced in the French way, as Gabriel Cramer was born in 

Geneva, a French Swiss).  

What matters is that whatever method you use, you get  x=1/6, y=1/2, z=1/3, and therefore 

the result, lo and behold, is: 
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A question is why should one reduce a simple three terms polynomial into the strange formula on 

the extreme  right. The fact is that the last formula is more telling in quantum mechanics.  

I have gone through various steps which are usually left out, such as demonstrating that 

we must look  for a third degree polynomial. Taking those steps for granted, one can write 

directly the system and apply any method of solution. I believe that there is no more 

direct way to find the formula for the sum of the squares, but I am ready to accepts 

suggestions.  

 

And now, lets go into something still simpler.  

 

A child’s play.  

It may seem strange, but I believe that finding the formula for the sum of the squares 

intuitively, or, at least, graphically, is more complicated than for the case of  the sums of 

the cubes (see for example  

http://dainoequinoziale.it/resources/scienze/matematica/sommacubi.pdf and use Google 

Translate if you are not familiar with the Italian language).  

Let’s now make a practical example, taking n=4.  

We first construct three irregular tetrahedrons of equal shape, each of which has 4 floors, 

composed of 16 (= 4 x 4) elementary cubes on the first floor, 9 (= 3x 3) on the second floor; 4 

(= 2x2) on the third floor, 1 on the top floor. As you can see, each tetrahedron is made up 

of S(4)  elementary cubes, as it is  equal to the sum of the squares of the numbers 1 to 4, i.e. 

30 = 1 + 4 + 9 + 16. The smallest fantasy effort that I will require will be that you accept that 

the method we will adopt can be extended to n floors, that is, to the sum of the squares 

from 1 to n. 

 

http://dainoequinoziale.it/resources/scienze/matematica/sommacubi.pdf


 

Fig.1 

Let’s now fit the three tetrahedra in such a way that the various floors of the resulting 

“quasi-parallelepiped” are composed as shown in the following figure. Note that these are 

not regular tetrahedra, and the result is not a parallelepiped. 

 
 Fig.2 

 

In fact  the top floor is only half occupied by the green cubes, as the yellow tetrahedron 

does not have a fifth floor. Floor by floor, the arrangements looks as follows: 

 

 



 

Now the polyhedron in Fig. 2 is not a parallelepiped, because the fifth floor is incomplete. 

To make it a parallelepiped, however, there is a simple trick. The ten green cubes on the 

top floor are halved vertically. Ten half-cubes will remain where they are, the other ten 

half cubes will be moved to the empty space. In short, the loft with terrace is given up, but 

there will be lower attics. At this point we have our final figure 4, which,  on the top floor, 

has 20 rooms of   height  1/2, while all the other floors have cubic rooms of height 1. The 

red broken line indicates where the old cubes ended and where the new half cubes are 

arranged. 

 

 

 

The volume of the parallelepiped remains equal to three times the sum of the squares from 

1 to 4, i.e. from 1 to n, but the three sides are: n (here 4), n +1 (here 5) and the height n + 1/2 

(here 4+1/2). 

We therefore have: 

3 S(n) = n (n + 1) (n + 1/2) = 1/2 [n (n + 1) (2n + 1) 

S(n) = (n (n + 1) (2n + 1)) / 6 

Which is directly the formula preferred in Quantum Mechanics. 



 

 

NOTE. 

I am grateful for the formula I have presented to the 

https://www.youtube.com/watch?v=aXbT37IlyZQ  

YouTube site, although anonymous, which indicates that the method was probably 

invented elsewhere.  

A more complete explanation is given in  

https://en.wikipedia.org/wiki/Square_pyramidal_number 

 

Anyway, to whomever invented it,  Chapeau !, as the French say. 

https://www.youtube.com/watch?v=aXbT37IlyZQ
https://en.wikipedia.org/wiki/Square_pyramidal_number

