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INTRODUCTION 

 

The present  essay is the (slightly) expanded version of an answer to the question: 

How do you realize that XOR is needed to solve Nim's game ?, which  

appeared on Quora, English version, years ago. The interest in Nim doesn't seem to be 

very high, but my approach is that questions on Quora are just pretexts to study some 

problems I heard about years ago, without ever having the time to look into them in 

depth. My history with Nim, for example, dates back to the 1970s. 

 

The simple answer is that XOR as a logical operator is not needed to solve Nim's game. 

In fact, Prof. Bouton, the inventor of Nim (1) never used the logical operator XOR in his 

only work, which laid the foundations of the mathematical theory of the game, but 

reduced the problem to the use of the modulo sum 2, a concept that derives rather from 

modular arithmetic (Gauss) or from the theory of finite fields (Galois) of order 2. 

 

 
Table 1 

Sum and multiplication in Galois Field F2 - multiplication is not used in the proof of the winning strategy for 

Nim. 

 

The problem with many of the explanations of the game given in popular texts (including 

most of Wikipedia), is that one gets the impression that the concepts XOR (exclusive OR) 

and/or Mex (minimum excluded) somehow magically give a solution, and there is no 

explanation as to how this rather abstruse approach was achieved. Furthermore, it gives 

the impression that, without having at least an introductory notion of Boolean algebra, it is 

impossible to win at the game of Nim. 

Bouton, who in 1901 was the first to explain Nim's winning strategy, did not use any such 

concepts. 

Now I will try to understand how Bouton came to his conclusions, which are the basis of 

the game. Unfortunately, Prof. CL Bouton was unable to speak to me, and what follows is 

a sort of "mathematical science fiction" exercise, but, of course, the reader is free to accept 

or reject my reconstruction. 
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Game definition (from https://en.wikipedia.org/wiki/Nim ) 

 

Nim is a mathematical game strategy in which two players take turns removing objects from 

distinct piles or piles. At each turn, a player must remove at least one object and may remove any 

number of objects as long as they all come from the same pile or pile. Depending on the version 

played, the goal of the game is that of getting the last item or  to avoid getting the last item. 

 

The first option " Whoever gets the last item wins " is called "the normal nim game"; the 

second option “ Whoever takes the last item loses ” is internationally called the 

“misère” variant of the nim game. I will focus on explaining the genesis of the winning 

strategy for "normal play". Once you understand the principles that lead to a "normal" 

game winning strategy, there is an easy way of converting it into a "misère" game winning 

strategy. 

I will call any act of removing objects a " remove ", rather than “move” or "grab", because 

the player does not keep the coins. 

 

1. One pile. 

Suppose we have the simplest form of Nim: a pile of objects (I like to think of coins ). 

To play the game "with one pile" we have to change the rule given above by Wikipedia, 

otherwise the first player can take the whole pile, and invariably wins. Instead, players can 

only remove 1 or 2 or 3 coins. 

To put some order in our mind, let's line up the coins in a row. The first player (A) removes 

the first 1, or 2 or 3 coins. Then the second player (B) does the same, and the two players take 

turns, until they reach the end of the line: the player who in the last remove takes the last coin 

wins. 

Safe and unsafe locations. 

A brief reflection is enough to conclude that there are "winning" or "safe" positions and 

"losing" or "unsafe" positions. What do the terms "safe" and "unsafe" mean? The property of 

safe positions is that, starting from a safe position and taking 3, 2, 1 coins, one cannot reach the 

next safe position, otherwise the opponent could do it. The property of unsafe positions is 

that there is always (at least) one way to reach a safe position starting from a different one of 

them. 

The last winning position before the victory is the fourth place from the end. If a player (A) gives 

the game to B with only four coins left, then B has lost, because he is obliged to take at least 

one coin, which allows player A to take the last three coins, including the last coin. B, on the 

other hand, cannot take 4 coins. So we can say that a position is safe for the player who 

reaches it with his move. A safe position, on the other hand, is a position of doom for the 

player to (re) move from a safe position. But we see that to reach that safe position, Player A 

https://en.wikipedia.org/wiki/Nim
https://en.wikipedia.org/wiki/Game_of_strategy
https://en.wikipedia.org/wiki/Game_of_strategy
https://en.wikipedia.org/wiki/Game_of_strategy
https://en.wikipedia.org/wiki/Game_of_strategy
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had to start from the safe position at the eighth place from the last coin. In conclusion, a safe 

position is a multiple of four places from the last. 

 

 
 

Fig. 2 
The Nim game with a single pile of 13 coins (and two players). Starting from the left and alternately 

removing 1 or 2 or 3 coins, the player who manages to take the last coin on the right wins. 

 

 

This isn't quite a game like chess or checkers, and as soon as the two players figure out the 

trick, the game gets a little boring. The bottom line is that, if the initial number of coins is 

randomly decided, in one out of four cases, on average, the first player, A, has to contend 

with a safe position. In that case, if B knows the game, A has lost and there is no way to 

correct the situation. In the three out of four cases, however, since he does not start from a 

safe position, the first player wins, because he can remove enough coins to reach a safe 

position, and his opponent cannot do anything about it. So the advice is: try to be the first 

player. Players will likely get bored soon, but at least they learn two concepts, that of a 

safe position , which requires two removes to reach another safe position, and that of an 

unsafe position , which only needs one. 

Consequently, the scheme of a correct game is as follows: 

0. Player A establishes a safe position 

Move 1, B's turn: B by definition cannot move into a safe position . He makes any 

possible remove, the total number of coins decreases. 

Move 2, A's turn: A establishes a safe position in one remove from where B stopped, the 

total number of coins decreases. 

Move 3, B's turn: B by definition cannot move into a safe position . He makes any 

possible remove, the total number of coins decreases. 

Move 2, A's turn: A establishes a safe position in a remove from where B stopped, the 

total number of coins decreases. 

…. 

Move 2n: A reaches the winning position and takes the last coin. The total number of 

coins is now 0. 
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The pattern I presented  is the basis of the winning strategy of all Nim-like games. 

 

2. Two piles 
Now let's see what happens when we have two piles of coins. Here we return to the rule given by 

Wikipedia: a player can take as many coins as he wants from one of the piles , even the entire pile . 

Taking a whole pile is not a good idea, because the opponent wins by removing the entire other 

pile. 

The final winning position is when we have 1 coin left in both piles . Suppose A has 

reached or built that position. Then B has lost, because he has to take a coin, that is, he has 

to clear one pile, and therefore A can win by clearing the other pile, which is the last coin. 

What are the safe positions that both players must try to reach? Obviously those where 

both piles have the same number of coins. The point is, if Player A has left one of these 

configurations on the table, Player B can only take coins from one pile, and in so doing 

disrupts the equality of the coins in the two piles. Player A can then restore equality (and 

thus reach a safe position ) by removing the same number of coins from the other pile. 

 
 

Fig.3 

 
Nim game with two batteries. The "safe" or "winning" positions are those in which a player manages to get 

two piles with the same number of coins. 

 

 

3. Three piles. 

Finally, let us consider the most interesting case of three piles, which can be easily 

extended to n piles. Suppose we put no more than 10 coins in each pile. 

3.1 Safe locations 

a) Safe final position: (0,1,1) (In all examples the piles can be swapped without changing 

position. Hence, (0,1,1) = (0,1,0) = (1,1,0).) 

We start  from the end of the game. The player who sets up the position (0,1,1) is "sure" to 

win, because his opponent has to take a coin, leaving the final one to the starting player, 

who thus wins - in the "normal" game. 

b) Second safe position (from the end): (1,2,3) 
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Now we look for the previous safe position, which must be two removes from (0,1,1) or 

any other safe position. 

It cannot be (1,1,1), because with a single remove the opponent can reach the final safe 

position (0,1,1); as a general rule, a position is not safe if it contains two of the same coins 

in a pile. In fact, if player A gets position (n, n, m) , player B, in a remove, moves to the 

safe position (n, n, 0) that we have already encountered in Section 2, completely removing 

the third pile . The game continues as the "two-pile game" we considered above, and 

remains so, because the third pile cannot be rebuilt (players can only remove the coins, 

they cannot add them) - and A is in trouble. Therefore, the only chance of a safe position 

for Player A is (1,2,3). 

We see that player (B), when compared with position (1,2,3), can take the 1 from the first 

pile. Then player A takes 1 from the third pile: the position is now (0,2,2) a safe position of 

the two-pile game, which, in the worst case, will become (0,1,1) in the next round. If B, on 

the other hand, removes coins leaving a position (1,1, n) or equivalent, A takes the entire 

pile n, and returns to (0,1,1), or equivalent. Etc. 

The example given suggests a general link between nim games with different numbers of 

piles: a position in the 4-piles game is not safe if it includes three piles with numbers of 

coins corresponding to a safe position in the 3-piles game . The player, whose turn it is, 

can remove the last pile and land in a safe position of the 3-pile game. So, in the four-piles 

game we do not expect to see, for example, any safe positions like "1, 2, 3, n", because the 

player who has to play could remove the fourth pile in one move and play the game with 

4 piles as if it were a game with 3 piles, starting from a safe position. 

More generally we can say: Rule I: a safe position in a game with n-piles cannot have n-1 

piles which form a safe position in a game with n-1 piles. 

c) Third safe position (from the end): (1,4,5) 

What is the next closest safe position going back in the game? 

We can now give Rule II : not only must the player avoid having two piles with the 

same number of coins, but two different safe positions cannot have two piles with the 

same number of coins and a third with a greater number of coins, because, if this is the 

situation, the opponent can move from one safe position to another safe position with a 

single remove of coins from a single pile . So, in our case, the new position must not have 

two numbers equal to two numbers among 1, 2, 3. Suppose we keep 1 in first place. Then  

the second number can be neither 2 nor 3, and the smallest allowed number will be 4. The 

third number can be neither 1 (Rule I) nor 2 or 3 or 4 (Rule II), and therefore it will be 5. So, 

the next safe position is 1, 4, 5.  
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Lemma of Rule II: in a safe position, the numbers of coins of two piles uniquely 

determine the number of coins in the third pile. 

d) Fourth safe position: (1,6,7) and other (1, n, m) positions 

Always going back in the game, the previous position (1,4,5), is obtained by always 

keeping 1 and considering again that the second number cannot be 1 (rule I). For rule II, it 

cannot be either 2 or 3 (because then in a single move we fall back to 1,2 3), and it cannot 

be 4 or 5 (because we fall back to 1,4,5). It must be 6 and the last is 7. 

Hence, (1, 6, 7), is the fourth safe position. 

Later we will have (1,8,9) , fifth safe position , always applying Rule I and Rule II. The 

series of safe positions with 1 in the first place ends here, if we keep the number of coins to 

a maximum of 10 in any pile (if we remove the limit then (1,10,11) would be the next safe 

position etc.). , we note that 1 will not appear in any future safe position, as long as 10 is 

the maximum number of coins. 

e) To reach the next safe position, we must have a 2 in the first place. The next pile can 

have neither 2 coins according to rule I, nor 1 or 3 according to rule 2. It can be 4. Thirdly 

we cannot have 1 (fully used), nor 2 (rule I), nor 3 (rule II, applied to 1,2,3), nor 4 (rule I), 

nor 5 (rule II, applied to 1,4,5). We must have 6. 

Sixth safe position, (2,4,6). 

The next safe position has 2 coins in first place, and in second place there can be neither 2 

(rule I), nor 1, nor 3 or 4 (rule II). We can have 5. Again, the application to the third place 

of the rules we have given excludes 5 and 6, and therefore the seventh safe position is 

(2,5,7). 

It does not take a mathematical genius to continue, and to discover that we then have 

(2,8,10) , as (2,8,9) is excluded by Rule II, applied to (1,8,9). 

Then we have (3,4,7), (3, 5, 6) and (3, 9, 10) . 

There are no other safe positions, as long as we limit ourselves to a maximum of 10 coins 

per pile 
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Table 2. 

All safe (or winning) positions, with maximum number of chips = 10 for each pile. 

 

 

To win a game with 3 piles and a maximum of 10 coins each, this is all we need. We can 

memorize the safe positions (which is not an extraordinary feat), or write them down on a 

piece of paper. However, for some reason, people don't refuse to play with someone who 

has memorized the 10 or 11 positions, but they refuse to play if he reads them from a slip 

of paper. 

 

A brief reasoning based on Rules I and II also convinces us that, playing with 4 

piles of coins, the positions (1, 1, n, n) are safe. Less simple is the case of safe 

positions (1,3,6,4), (1,2,5,6), (1,2,4,7) (1,3,5,7). (2,3,4,5) (2,3,6,7) (2,3,8,9), (4,5,6,7) 

(4,5,8,9) (n, n , m, m) (n, n, n, n). - but we will see another way to prove it. The 

(1, 3, 5, 7) position shown on the cover is safe, and therefore the player, however 

prudent it may be, if he is the first to play from that position, will certainly lose. 

 

C. Bouton must have wondered what was common to all safe positions, to make them 

stand out as the key to solving the Nim game. Finding an easy "safety" criterion would 

have facilitated the verification whether they were safe or not. 
 

Clearly, the decimal expression didn't say much. The sum of the three numbers, on the other 

hand, produces an interesting first result, since, by adding the amount of coins in the piles of all 

safe positions, both in two-column and 3-column games, an even number is obtained. 
   

Then he must have thought that, if one wants to delve into the machinery of a number, one 

must resort either to the prime factorization, or to the binary basis, because, as a rule, it is 

difficult to see in other bases what one cannot see. in base 2. 

Prime factorization doesn't say much: four times we have a total of 14 coins. Now, 14 = 2 x 7, 

where 7 is an odd prime, but 12 and 20 don't fit in this picture. At first glance, there is no 

obvious common feature resulting from prime factorization. 
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I believe that, perhaps after other attempts, C. Bouton turned to the binary base, which 

allowed him to compile the following Table 3, which is nothing more than the translation 

of Table 2 into binary base (each row giving the number of coins of each pile): 

 

 

 
Table 3 

All safe positions for piles not exceeding 9 coins. The positions marked with a, b, c etc. are those with piles not 

exceeding 7 coins, excluding piles (0,1,1) and (0, 0, 0). 

 

To these must also be added the nine positions of the form (0, n, n) - inclusive of (0,1,1). 

I would bet that, once all eleven safe positions were written in binary form, in line, our 

man Bouton immediately realized what was common to all of them, which was that each 

column included only either all zeros or a pair of 1’s (considering that there were only 

three piles, and therefore three rows). Furthermore, he must have realized that two lines of 

a triplet determine the third row, if we want to fit the triplet into the common pattern (a 

fact we already know: 3.1.c Lemma ). In binary notation the same result becomes obvious, 

because the third line is necessary and sufficient to compensate for missing 1s or 0s. 

Therefore, in order to reach a safe position, it is not necessary to make a comparison with 

all known safe positions. We know from the rules of the game, that only one pile 

(represented here as a row ) can be modified, or, in fact,  reduced. 

Now we come to the core of my answer to the question posed on Quora: the sum 

modulo 2 has the same table as the logical XOR operator of Boolean algebra. However, 

in no proof of Nim's winning strategy is it imperative to use the properties of XOR in 

some sort of logical proposition. 
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Table 4 

Table of the results of acting with the XOR operator on the two numbers (0,1). 

Basically, it is the same as the “+” table in Fig.1 

 

As we said, Bouton never mentioned more advanced mathematical concepts than that of 

"sum modulo 2", a concept that derives rather from modular arithmetic (Gauss, 1801) or 

from the theory of finite fields (Galois) of order 2 (Bouton was an expert of advanced 

group theory.) 

In section 2 of his article, he immediately tells us that a safe position is found by writing on 

three lines the number of three coins in each pile in binary form and aligning the columns. 

Then, more or less casually, he says: " If the sum of each column is 2 or 0 (ie congruent to 

0 mod.2) the set of numbers forms a safe position". It gives no explanation for such an 

extraordinary prescription, and so I believe he got there as I have shown, by constructing 

empirically the set of consecutive safe positions, starting at the end of the game, putting 

them in binary form, and comparing them. The property he mentions catches the eye and 

Bouton wrote as if he was examining Table 3, which he had built, but without telling us 

how. 

3.2 The number of safe locations . 

A last point needed a proof, that is that all and only the positions with sums per column 

all equal to zero, using the sum mod.2, were represented in the empirical construction of 

the type, which I gave in Paragraph 3.1. 

One answer to this question is to calculate the total number of safe positions both 

theoretically and empirically. The results must be the same. Let's see how we can 

theoretically calculate, in the simplest way possible, the total number of safe positions. For 

example, let's verify that 7 is the safe position number for piles not exceeding 7 coins. If 

one does this with a maximum of 7 coins per pile, he will have to fill a 3 x 3 square matrix 

with zeros and ones. 

The number is limited because a column can give a sum mod 2 equal to zero only if it 

takes one of the 4 forms. 
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Table 5. 
The 4 possible columns whose Mod2 sum (bitwise, i.e. without carryovers) of the elements is 0. 

 

Each of the four columns can combine with all the columns of the quartet. The binary 

forms of numbers up to 7 only require three columns, so we can have up to 43 

combinations, which is a total of 64 positions. However, we can subtract as less interesting 

the positions of the form (0, n, n,), seven of them, and their permutations (we can put the 0 

in any of the three places), for a total of 7 x 3 = 21 positions (which have been dealt with 

separately). This operation brings us to 43 combinations. The position containing "only 

zeros" is then subtracted, as it is even less interesting. We are now at 42 positions. But 

looking at the rows, (i.e. the number of coins in each pile), we see that each position has six 

equivalent permutations (i.e., numbering the rows as 1,2,3, we have the permutations 123, 

132, 213, 231, 312, 321, all equivalent for the Nim game). So we have 42/6 intrinsically 

different positions, that is a total of 7, which coincides with Table 1. The different safe 

positions that hold up to 7 coins are the seven positions labeled a, b, c, d, e, f, g, plus 

seven form positions (0, n, n) or equivalent. 

Similarly, a table built empirically by Bouton, with a maximum of 15 coins per pile, yields 

35 safe positions , and a calculation along the lines we followed above gives the same 

number. 

Making the calculation is easy if we consider the tables for the positions, in which all the piles 

have at most 2n -1 coins. For example, we can calculate safe locations for up to 15 objects (= 24 -1) 

across three piles . So the total number of combinations is 44 = 256. We need to subtract the 15 x 

3 (= 45) combinations, which include an empty pile. This leaves us with 211 combinations. We 

subtract the only "all zero" position and get 210. But each position (or line) appears 6 times (by 

permuting the lines), which means that the total number of different safe positions for n = 16 is 

210/6 = 35 , as reported by Bouton in his article. 

Again, we need to add to them the 45 positions (3x15) where two columns are equal. 
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Table 6 

The 15 safe positions "Nim" for three piles with a maximum of 15 coins (from Bouton's card). The 15 (x3) 

module positions (0, n, n,) and the position (0,0,0) are not included. 

Thus, there are no defectors, which have zero sum for each column and are not safe 

positions. 

At that point Bouton had nothing but a conjecture. He had to turn it into a theorem or a set 

of theorems. 

 

3.3 Bouton's theorems. 

Bouton immediately after presenting "a safe position" (Section 2) gives two theorems, the 

first, that if A leaves a safe position on the table, then B cannot perform any remove that leaves a 

safe position on the table (which would put A in difficulty). This is almost obvious, based on 

Lemma 3.1.c, because two elements of a safe position uniquely determine the third 

(assuming there are no empty piles). 

Hence, since B can move coins from only one pile, he is forced to abandon a safe position, 

whatever remove he makes, because two safe positions cannot have the same number of 

coins in two different piles. 

The second theorem is that regardless of changes made to B in one column of a safe position left 

by A, A can always remove coins from one of the remaining two columns to create a safe position. 

From what has been said above, it is obvious that one of the two remaining piles has to be 

operated (i.e. remove coins from) . Here Bouton makes a "limited proof", which considers 

only three piles, and, furthermore, assumes that the insecure position from which part A 

was left by B, which in turn started from a safe position, left by A. Both restrictions, as we 

shall see, are not necessary…. But he did it first. I will give a more general proof of the 

second theorem than Bouton's. 

He further states that the same rules apply to a game with more than three piles: " In this 

case a safe combination is a set of numbers such that, when written in the binary scale and arranged 

with the units in the same vertical column, the sum of each column is even, i.e. 0 mod. 2. By 

adding column by column ( which is called a "bit by bit" sum, basically a binary sum 

without carryovers) mod 2, we have 0 0 0 0. The sum "bit by bit mod2" will hereinafter 

be called NimSum [.., .., ...] and the numbers on which the NimSum operates will be 

contained in square brackets. "Bitwise mod2" or "no carry" seem to me pleonasms: "binary 

sum mod2" excludes carry and remains bit by bit. 

I recall that in mod.2 operations the numbers are represented by the remainder of their division 

by 2 (i.e. either 0 or 1), and the results of all operations are represented by their remainders of 

division by 2. For example 3 (decimal) + 4 (decimal) is represented by 1 + 0 = 1, which is also the 

remainder of the division of the decimal result 7 divided by 2. In NimSum the sum of two 
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numbers, the only operation that matters to us) is performed by writing the two numbers in 

binary form, for example 3 + 5 = 011 + 101, by placing them in a column and then adding the 

columns  

011 

101 

- - - 

110 

 

But, returning to the decimal form, we have that 3 + 5 = 6. 

 

 

It is worth noting that the NimSum operation has commutative and associative properties 

and also, as shown in the addition table, NimSum [x, x,] = 0, which can be proved by first 

setting x = 0 and then setting x = 1 . However, the result can be applied to any two equal 

numbers regardless of the number of binary digits 0 and 1). For example, suppose we 

want NimSum [13,13], which, in binary notation, is written 

 

1 1 0 1 + 

1 1 0 1 

The result (of the binary sum Mod.2 - automatically without carry) is NimSum [13,13] = 0 0 

0 0 or simply zero. On the other hand, the sum of two different numbers cannot be zero 

and is positive (we have no negative numbers in our system.) 

The example shows that if we put into columns  two equal binary expressions, we always 

have two pairs of 1's or two pairs of 0's in each column and their NimSum is always 0. 

3.4 Variants 

In his Section 5, Bouton briefly considers the case of n piles. The "safe positions" have the 

same properties for all pile numbers from 2 onwards, and "the proof by induction [ of the 

theorem that the player who first sets a safe combination can do so on each subsequent remove and 

will win ] is so  direct that it seems superfluous to give it. ”Many thanks. 

In Section 6, Bouton notes that the Nim game can also be played in a version where the 

winner is the one who forces the other player to take the last coin (the so-called “misère” 

version). 

I provide here my version of the strategy to win the "Misère" version, which differs 

somewhat from Bouton's approach. 

Basically the strategy changes from the “normal” game to the “misère” one only at the end 

of the game, when a player (for example A) reaches the position (1, 2, 3) . 

At that point B can reduce 123 to six positions: 12; 121; 122; 113; 13 or 23 . 
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In the “normal case”, the final winning position is (0, 1, 1) . In four cases it is immediate 

to see how A can reach position 011. In two cases A can easily reach (0, 2, 2) which we 

know is a safe position for "normal" play. 

In the "Misère" game, the final winning position is (1, 1, 1) or (1, 0, 0) and we can see 

how A can arrive at 111 or (better) 001, from any of the six given positions (12; 121; 122; 

113; 13 or 23. ) Player A can reduce 12 to 1; 121 to 111, 122 to 22, 113 to 111, 13 to 1, 23 to 22. 

Note that 22 forces B to 12, or 02, and in both cases, A can take the last coin ("normal" play) 

or force B to take the last coin ("misère"). 

3.5 The "standard demonstration" 

As announced, I will not follow Bouton's approach to demonstrate the winning strategy, 

because, once we introduce the NimSum concept with its immediate properties, the proof 

is simple and more general than Bouton's. 

While Bouton starts from a "safe position" of a "3-piles game", which appears without 

explanation, the standard explanation (which appears for example in Wikipedia) rightly 

does not mention any "safe position" at all and is not based on the fact that we are dealing 

with three piles. The standard proof starts from an arbitrary position, regardless of how 

we got there, and calculates the NimSum S of that position. Then it is shown that, if S = 0, 

each variation in a single pile leads to a position in which the sum S is not zero, while if S> 

0 (cannot be less than zero) it can be reduced to S = 0 by operating on a single pile. 

The proof is simple. To be concrete, suppose we have three piles, whose number of coins 

in an initial position is x1, x2, x3. After writing the coin numbers in binary form, their 

column-by-column sum (mod2), which we called NimSum [....], gives a binary number, S. 

In other words, S = NimSum [x1, x2, x3 ] . 

Let there be no doubt. The reader should not be surprised if in binary form NimSum [101, 

110] = 11 , which in decimal notation becomes 5 + 6 = 3. 

After the player who is faced with a situation with any S performs its remove, the new 

position is T = [y1, y2, y3], with new values for the number of coins in the piles. In truth 

the rules allow to act only on one pile (which we can always permute in third place), 

which changes its value x3 in a new y3 and y3 <x3 (in decimal or binary form) because the 

coins can only be removed . In all other piles the numbers are unchanged (x1 = y1, x2 = y2). 

We have: T = NimSum [0, T], but the NimSum rules tell us that NimSum [x, x] = 0, or, in 

our case, NimSum [S, S] = 0. So we can replace 0 with NimSum [S, S]. 

Therefore T = NimSum [S, S, T], and, by the associative property, T = NimSum [S, NimSum 

[S, T]], where 

NimSum [S, T] = NmSum [NimSum [x1, x2, x3] + NimSum [y1, y2, y3]]. 
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We can rearrange T like 

T = NimSum [S, NimSum [x1, y1], NimSum [x2, y2], NimSum [x3, y3]]. 

But, thanks to the fact that x1 = y1 and x2 = y2, we finally have 

T = NimSum [S, NimSum [x3, y3]] (the only sum that differs from 0). 

We now have two cases: 

I) The initial position was S = 0, which means that after a remove the resulting position 

cannot be T = 0, 

II) The starting position was S> 0, which means that the final position can become (with 

proper remove) T = 0. 

The whole theorem guarantees that if a player (A) sets a position with S = 0, the 

opponent (B), due to (I), cannot transform the position to another position with 

T = 0. Player A, on the other hand, thanks to (II), can always pass from a 

position T> 0, created by B, to a position with S '= 0, and fewer coins . The 

process will continue (T unsafe, S 'safe; T' unsafe, S '' safe ... with fewer and 

fewer coins , until there are no more coins, and A has won, because to build the 

position (0,0, 0), with S (2k) = 0 means, “to  take the last coin ”, or the last coins. 

We wrote S 2k , because we get there with an even number of moves. Therefore, 

starting from a safe position and playing well, the second player arrives at the 

safe position par excellence (0,0,0). As we have shown, the mod.2 sum and all 

the other approaches are only more or less sophisticated methods to 

characterize safe positions and show us how to get there. The comment I just 

made is almost obvious, but I thought it best to write it explicitly, because I have noticed 

that its frequent omission in many explanations of the game's strategy leaves many 

players with a recipe in hand, without understanding why starting from a safe position, 

the first player, while playing correctly, must inevitably lose. 

 

While (I) is immediate, (II) requires some attention. Let's see it in detail. 

If S ≠ 0, it, written as a single binary number, will have a leftmost 1 in position D (from 

right). The fact that there is a 1 in the binary representation of S expresses the fact that the 

S of the position is not equal to 0. We must therefore look for the pile xK which has a 

number of coins with a number 1 in that position D, let xK ( D), in binary notation. It does 

not need to be the leftmost bit of xK. There must be at least one of these piles, otherwise 

the S (D) bit, the sum of the binary digits in column D, would be zero. 

So let's put yK = NimSum [S, xK], which is interpreted as a binary number of coins. 
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The NimSum of bit xK (D) with S (D) will be 0, being the NimSum [1,1]. The first 1 comes from 

S (D), the second from xK (D) 

We claim that yK <xK (number of coins), i.e. the pile of K has decreased. In fact, all the bits 

to the left of D remain unchanged by removing from xK to yK, while the bit D, adding it to 

1, will decrease from 1 to 0, thus decreasing the value of yK by -2 D. 

Changes occurring to the right of D will amount to a maximum of + 2 D -1. Consider, for 

example, the binary difference of 1000-0001, (i.e. 8-1), which yields 7 (111). 

It may be useful to remember that the binary formulation of a number indicates only which 

powers of 2 appear in the sum that reproduces the number. For example, suppose a Zero in 

position D from the right indicates that the power 2 D has been eliminated . Now suppose that 

in all positions following D to the right, up to the end of the number, there is a 1, which means 

that all decreasing powers from 2 (D-1) to D 0 are present . Then the number is given by the sum of 

all powers from 0 to D-1, ie by the sum 1 + 2 + 2 2 .. + = 2 D -1, which is less than the 2 D power that 

we have eliminated. We must therefore conclude that in any case the number decreases. 

Although higher (uninvolved) powers exist in xK, the number with 2 D missing is less than the 

number where 2 D appears . 

The bits to the right of D can be arranged in such a way as to create a situation S = 0 (those 

with D greater obviously do not matter) 

In other words, the player can remove xK –yK coins from the K pile (since xK- (xK- yK) = 

yK). The result is that the new T will be equal to zero: 

T = NimSum [S, xK, yK] =NimSum [(S, xK), NimSum [S, xK]] = 0 , cdd. (The two 

addends are the same.) 

This means that with a single remove, you can move the game from any insecure position 

to a safe position. 

An example will (I hope) clarify the situation and at the same time show what happens if 

there are multiple piles whose binary representation has a 1 where the highest bit of S is 

(i.e. in the position we named D). I have not seen this particular case dealt with elsewhere, 

but it is not impossible to find, at least as a starting position. Suppose we have the three 

piles (6, 3, 7), that is (110, 011, 111). If both players play well the (6,3,7) position is only 

possible as a randomly chosen starting position, which we assume, while it is an 

impossible position in the course of a correct game (Why? Hint: it is impossible to get (6,3,7) 

from a secure location with multiple coins) . The NimSum of the three piles is 010. As you can 

see, the first bit to the left of S is at D = 2, and all three piles have 1 as the 2nd bit. 

1 1 0 

0 1 1 

1 1 1 

S = 0 1 0 
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Now, S can become 0 if we put 0 in place of 1 in second place (from the right) in any of the 

binary numbers that represent each pile. This can be achieved by NimSum [S, xK] (in this 

case K is 1, or 2, or 3, meaning any of the three piles). We therefore have three possibilities: 

putting 0 in the middle of the top row (and remember that 4, 3, 7 = 3, 4, 7); putting 0 in the 

middle line ( 6, 1, 7 = 1,6,7); putting 0 in the bottom row ( 6, 3, 5 = 3, 5, 6). All three 

positions we get are safe. 

The results were achieved by inspection, but we should demonstrate that the same result 

can be achieved by following the above rules. We consider yK = NimSum [S, xK]. 

 If we select K = 1 , we have y1 = NimSum [010, 110] = 100, corresponding to y1 = decimal 4; 

 for K = 2 we have y2 = NimSum [010, 011] = 001, corresponding to y2 = decimal 1 ; 

 for K = 3 , we have NimSum y3 = [010, 111] = 101, corresponding to y3 = decimal 5. 

By subtracting from x1 the difference x1-y1 = 6-4 = 2 from the first pile we obtain the three 

piles 4, 3, 7; subtracting 3-1 = 2 from the second pile we have 6,1,7; subtracting 7-5 = 2 from 

the third pile, we have 6,3,5 . As above, they are all safe positions. 

In addition to practicing on the way to reach a safe position from an unsafe position, we have 

discovered a class of positions, which cannot be reached in the course of a fair game. However, 

they can present themselves as a starting position, especially if the starting position is randomly 

selected, to ensure fair play. 

As we can see, at no time does the standard proof depend on the number of piles, which can be as 

many as we want. A player who lands on a position S = 0 (which is safe) always wins, and 

the rules for defining and creating (if necessary) a safe position also remain the same. Of 

course, both players have to play a perfect match. 

So what is the strategy for winning? 

The Nim game is truly a curious game. To make it an honest game, you need to draw lots 

for the numbers of coins for each pile, and to decide who is the first player. At this point, 

however, we already know who will win, and, between two good players, it is useless to 

play the game. 
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We thus have the result, common to all games for which it is possible (mathematically) to 

prove that there is a winning strategy, that they, from mathematical games become 

games of chance, because the victory is determined by the initial conditions, which, in 

order to have a fair game, must be drawn by lot. Since the draw by lot determines the 

outcome, it becomes useless to play the game. Theorem: Mathematical games destroy 

themselves. 

Conclusion 

At the end of his relatively short life (he died at the age of 53) Charles Leonard Bouton had 

to suffer from health problems, family problems, personal pain. 

Considering the main area of his research in his early years, I think that the essay on the 

game of Nim (a name, which Bouton himself coined, probably from the German word 

Nimm, which means " take!" - but without specidying the reasons for his choice ) was not 

taken too seriously by its author. Rather, he must have regarded it only as mathematical 

amusement. 

However, while no fundamental contributions of his are mentioned in the annals of 

differential equations, today his article " Nim, a game with a complete mathematical 

theory "" (1901) on Annals of Mathematics Vol. 3, n. 1/4, 1901 - 1902 is believed to have 

laid the foundations of the combinatorial game theory, an entire field of mathematical 

research. Good for him! 

As a concluding remark  I add that the interest in the game was revived by a famous film: 

" L'Année dernière à Marienbad", a 1961 Italian-French Left Bank film, directed by Alain 

Resnais, from a screenplay by Alain Robbe-Grillet There are three characters and one, 

named M, continually defeats the main character (?), X, and says, "I can lose, but I always 

win." 

Wikipedia comments [I put my comments in square brackets]: The film is famous for its 

enigmatic narrative structure, in which time and space are fluid, with no certainty about 

what is happening to the characters, what they are remembering or what they are 

imagining. Its dreamlike nature captivated [the critics] and baffled viewers; many hailed 

the work as an avant-garde masterpiece , although others [the majority,] found it 

incomprehensible. ... Marienbad received an entry in The Fifty Worst Films of All Time , ... 

 

 
Fig. 1: Neues Schloss Schleißheim 

This is NOT the hotel referenced in the movie "Last Year in Marienbad" (but close to it). 

 

https://en.wikipedia.org/wiki/Oneiric_(film_theory)
https://en.wikipedia.org/wiki/Experimental_film
https://en.wikipedia.org/wiki/The_Fifty_Worst_Films_of_All_Time


19 
 

NOTE 

(1) Charles L. Bouton (Saint Louis (MO) 1869 - Cambridge (MA) 1922) was a professor at 

Harward University, where he was remembered as an outstanding teacher, and editor / 

co-editor of two mathematical journals. He had studied for two years in Leipzig (with a 

Parker scholarship), where he had been one of the last students of the Norwegian 

mathematician Sophus Lie (died February 18, 1899). He received his PhD in 1898, with the 

thesis “ Invariants of the General Linear Differential Equations and their Relation to the Theory of 

Continuous Groups,” Supervisor: Sophus Marius Lie. 

( https://www.ams.org/journals/bull/1922-28-03/S0002-9904-1922-03508-2/S0002-9904-1922-

03508-2.pdf ) 

 

https://www.ams.org/journals/bull/1922-28-03/S0002-9904-1922-03508-2/S0002-9904-1922-03508-2.pdf
https://www.ams.org/journals/bull/1922-28-03/S0002-9904-1922-03508-2/S0002-9904-1922-03508-2.pdf

